Problem 1

In this problem, we will consider the Streamlet protocol run by n permissioned nodes, with a tunable quorum size q for notarization.

1. Suppose we want to maximize the resilience of the protocol, i.e., maximize the number of adversarial nodes f that can be tolerated such that the protocol is both safe and live. Derive the optimal quorum size q and show that the resulting optimal resilience is $f = n/3$.

2. Suppose you believe that an attack against safety is more likely than an attack against liveness (since a double-spend can provide significant rewards to the attacker). Hence, you want to tune Streamlet to increase the resilience against safety attacks, even at the expense of decreasing the resilience against a liveness attack. Can this be done? If so, exhibit and plot the tradeoff between the two resilience. If not, explain why not.

Problem 2

A consensus protocol is said to be t-safe if whenever the number of adversary parties is less than t, the protocol is safe. A consensus protocol is said to be t-accountable-safe if whenever safety is violated, at least t parties can be irrefutably proven to have violated the protocol.

2. In Lecture 18, we claimed that Streamlet (with quorum size $2n/3$) is $n/3$-accountable, where n is the total number of parties. But we have only gone through one possible safety violation scenario, not all. Complete the analysis by considering all safety violation scenarios.

Problem 3

Does the safety of the Streamlet protocol depends on the Δ-synchrony assumption? Explain.

Problem 4

Suppose all n parties running the Streamlet protocols are honest. Compute the average confirmation latency in terms of protocol parameters. Contrast this with the confirmation latency of the PoS longest chain protocol.