
EE 374 - Blockchain Foundations
Practice Final
March 15, 2023

1. The exam has 5 questions with a total of 124 points. You have 3 hours to take the
exam. Questions have different numbers of points so please allocate your time to each
question accordingly.

2. Please write the answer to each question on a separate page and upload a photo or
scan to Gradescope.

3. All answers should be justified, unless otherwise stated.

4. The exam is open-book, open-notes, open-internet.

Good luck!

Practice Final Page 1 of 27

(60 points) Problem 1
For the following questions, choose the one most fitting answer among the four choices. No
justifications are required for this problem. 2 points for a correct answer, 0 points for an
incorrect answer. 0.5 point for leaving the answer blank. Knowing you don’t know something
has value.

1. You are a passive observer and you notice that the ledger has not been including any
new transactions over the past week.

(a) You can deduce that safety is lost.

(b) You can deduce that liveness is lost.

(c) You can deduce that both safety and liveness are lost.

(d) You can make no such deductions.

Solution: It may be that no transactions were issued during the past week. The only
way to be sure is if you’re monitoring the mempool or issuing your own transactions.

2. Consider a proof-of-work longest chain protocol with t = n/3. What is the minimum
chain quality an adversary can cause over the long run?

(a) µ = 0

(b) µ = 1/4

(c) µ = 1/3

(d) µ = 1/2

Solution: The minimum chain quality can be calculated as follows:

µ ≥ 1− max. rate of adversarial blocks
min. rate of chain growth

≥ 1− t

n− t
=

1

2
.

This chain quality can be achieved by a selfish mining adversary in the long run.

3. Consider a Merkle tree with 1024 leaves that uses SHA256. How long is the proof size
for one inclusion in this tree, in bits?

(a) 1024

(b) 10

(c) 2560

(d) 262,144

Solution: The proof consists of log2 1024 = 10 hashes, each of which is 256 bits long.

4. Which of the following assurances does an existentially unforgeable signature scheme
give?

Practice Final Page 2 of 27

(a) Given an existing message and a correct signature on it, the adversary cannot
create a new, different signature on the same message verifiable under the same
public key.

(b) Given a message and a correct signature, the adversary cannot recover the secret
key.

(c) Given just a correct signature and a public key, the adversary cannot recover the
message.

(d) All of the above.

Solution: To see that (b) is correct, suppose that an adversary A obtains the correct
signature for a message and then uses that to recover the secret key. Then we can
create another adversary A′ that runs A, obtains the secret key, and then forges the
signature for any new message, thus breaking existential unforgeability. This is a
contradiction. Option (a) is incorrect because existential unforgeability only guarantees
that the adversary cannot forge signatures on messages that it has not queried before
(recall the definition of the existential unforgeability game). To see that option (c)
is incorrect, consider an existentially unforgeable signature scheme S and construct
another signature scheme S ′ which concatenates the message and the signature from
S to produce the new signature. Clearly, the message can be recovered from the new
signature, but S ′ can be existentially unforgeable.

5. Consider a κ = 256 proof-of-work puzzle with T = 2192. How many queries do you
expect to need before you get a solution?

(a) 256

(b) 64

(c) 2192

(d) 264

Solution: The probability that each query is successful is p = T
2κ

= 2−64. The success
of each query is an independent Bernoulli random variable. Therefore, the expected
number of queries before getting a solution is 1

p
= 264.

6. Consider a κ = 256 proof-of-stake longest chain puzzle with Tp = 2236. There are
n = 1,000,000 nodes. What is the expected number of nodes that will win in a given
round?

(a) 0

(b) 1

(c) 10

(d) unbounded

Solution: The probability that each query is successful is p = T
2κ

= 2−20. By linearity
of expectation, the expected number of nodes that will win in a given round is pn ≈ 1.

Practice Final Page 3 of 27

7. Consider a κ = 256 proof-of-stake longest chain puzzle with Tp = 2236. There are
n = 1,000,000 nodes. What is the expected number of valid blocks that can be proposed
in a given round?

(a) 0

(b) 1

(c) 10

(d) unbounded

Solution: If an adversarial node has a successful query, she can propose as many valid
blocks as she wants.

8. In order to ensure ledger safety in an honest majority setting, the macroeconomic
policy of a cryptocurrency must mandate that:

(a) Total coin supply rate must be non-increasing over time.

(b) Total coin supply rate must be strictly decreasing over time.

(c) Total coin supply rate must be non-decreasing over time.

(d) None of the above.

Solution: Ledger safety is guaranteed as long as the majority is honest regardless of
the macroeconomic policy of a cryptocurrency.

9. In a proof-of-stake longest chain protocol, which of the following adversarial bounds
are sufficient to achieve ledger safety and liveness respectively?

(a) t < n/3 for both safety and liveness.

(b) t < 2n/3 for both safety and liveness.

(c) t < n/3 for safety, but t < 2n/3 for liveness.

(d) t > n/3 for safety, but t > 2n/3 for liveness.

Solution: A proof-of-stake longest chain protocol is safe and live as long as t < n
2
, so

t < n
3

is sufficient, although not necessary.

10. If H is a random oracle, then G(x) = H(H(x)) is:

(a) Collision resistant, but not preimage resistant.

(b) Preimage resistant, but not second preimage resistant.

(c) Behaving like a random oracle.

(d) None of the above.

Practice Final Page 4 of 27

Solution: Recall that a random oracle returns a response chosen uniformly at random
for every query and returns the same output if the query is repeated. For every x1, x2

such that x1 = x2, H(x1) = H(x2) and, therefore, H(H(x1)) = H(H(x2)). For a fresh
query x, H(x) is chosen uniformly at random. The probability that H(x) will appear
in the previous cache of H as an input is negligible. Therefore, with overwhelming
probability, the random oracle will pick yet another uniformly random number to issue
as the output of H(H(x)).

11. Under a block size limit (in bytes), a rational miner prioritizes transactions by:

(a) Their size, in bytes, in increasing order.

(b) Their fees, in decreasing order.

(c) The ratio fees / byte, in increasing order.

(d) None of the above.

Solution: The rational miner prioritizes transactions by ratio fees / byte, but in
decreasing order.

12. Let G be a second-preimage resistant hash function. Consider the hash function H(x)
that prepends the fixed string “0110” to the output of G(x). The function H might
fail to be:

(a) Collision resistant

(b) Preimage resistant

(c) Second-preimage resistant

(d) None of the above

Solution: H(x) is second-preimage resistant, since G(x) is second-preimage resistant.
Recall that second-preimage resistance implies preimage resistance. However, it might
not be collision resistant, if G is not collision resistant.

13. The data that needs to be downloaded by an SPV light wallet holding an address that
has been used to send or receive money a constant number of times and is synchronizing
for the first time is:

(a) Linear in the chain length, but only logarithmic in the number of transactions per
block.

(b) Linear in the chain length and linear in the number of transactions per block.

(c) Logarithmic in the chain length, but linear in the number of transactions per
block.

(d) Logarithmic in the chain length and logarithmic in the number of transactions
per block.

Practice Final Page 5 of 27

Solution: An SPV light wallet has to download headers of all blocks to verify the
chain structure and proof-of-work (linear size in the chain length) and Merkle proofs
(logarithmic size in the number of transactions per block) for transactions related to
the address.

14. When the hashrate of the network increases, the variable difficulty proof-of-work pro-
tocol:

(a) Decreases T so that participants are incentivized to decrease q.

(b) Decreases T so that f is decreased over the long run and convergence opportunities
become denser and denser.

(c) Decreases p in order to keep f constant over the long run.

(d) Increases T in order to raise the difficulty.

Solution: When the hashrate of the network increases, the difficulty increases too, so
T decreases. Thus, the probability of a successful query p decreases too. The goal of
the protocol is to keep f constant, since if it increases or drops we have problems (of
safety and liveness respectively).

15. Which ledger virtues can a temporary majority adversarial miner break in a way that
is unhealable (they are not regained after any point in time) in the proof-of-work
protocol?

(a) Safety.

(b) Liveness.

(c) Both.

(d) Neither.

Solution: When honest majority is regained, chain quality, thus, liveness is recovered.
Similarly, common prefix and, therefore, safety is recovered.

16. Our Marabu protocol was attacked by a charming selfish mining adversary building a
new chain from genesis. Many students are falsely claiming they are this Adversary.
What is an appropriate way for the adversary to prove her identity?

(a) Open source her mining code on GitHub.

(b) Place her SUID in the “note” field of a new block on top of the adversarial chain.

(c) Sign her SUID using the coinbase key of the first block in the attack.

(d) Generate a new public/private key pair and use it to sign a message containing
both the latest adversarial tip as well as her SUID concatenated together.

Solution: Anyone can do parts (a), (b) and (d) but only the miner that produced
the first block in the attack can sign the message with the corresponding private key.
Part (a) is easy, since, once the Adversary open sources her GitHub, everyone else can
fork it. Part (b) is easy if the attack has stopped. It doesn’t take much effort to mine

Practice Final Page 6 of 27

a single block on top. Part (d) is easy, as anyone can generate a new key and sign
anything with it.

17. Which of the following functions is negligible?

(a) 1/n2

(b) e−n/3

(c) 1/ log(log(n))

(d) All of the above.

Solution: 1/n2 is not negligible, as it is an inverse polynomial. Similarly, 1/ log(log(n))
is not negligible, because log log n is even smaller than a polynomial. However, e−n/3

is negligible, because it is a negative exponential.

18. Double spending transactions, in which some transaction believed to be confirmed is
later reverted and becomes unconfirmed, are avoided:

(a) In both the UTXO and the accounts model by a signature.

(b) In both the UTXO and the accounts model by a nonce.

(c) In the UTXO model by a signature, and in the accounts model by the nonce.

(d) By the underlying blockchain.

Solution: A safe blockchain guarantees that confirmed transaction remains confirmed
later in time. Even if the signature and nonces are correct, a broken blockchain can
cause safety issues and a confirmed transaction to be reverted. An adversary can create
duplicate signatures and duplicate nonces, but only the blockchain can ensure that only
one of them is accepted.

19. Why can’t a coinbase transaction generate more money than the macroeconomic policy
mandates?

(a) It will invalidate the coinbase signature, and this will be checked by every node
before propagating the block further.

(b) It will invalidate the Law of Conservation, that input values must exceed output
values.

(c) Every node will do a hard-coded check that the output value is as required.

(d) The coinbase transaction will be spending money that is not in the UTXO set.

Solution: The amount of money generated in the coinbase transaction is specified by
the protocol, which is hard-coded. Even a valid coinbase transaction does not have
a signature, does not respect the Law of Conservation, and does not spend from the
UTXO set.

20. During a chain reorg, transactions evicted from the chain are:

(a) Placed back into the mempool if still valid.

Practice Final Page 7 of 27

(b) Evicted from the chain, but manually inserted into the ledger.
(c) Placed in the next block template, but not in the mempool.
(d) Discarded.

Solution: There is no guarantee that all transactions evicted from the chain are valid
according to the new chain state. Thus, they should be verified first and, if valid,
placed in the mempool.

21. Imagine a network where suddenly the non-eclipsing assumption no longer holds. What
is the worst thing a non-mining adversary can do to a proof-of-work longest chain
protocol?

(a) Transactions get confirmed, and they are never reverted in the future.
(b) Transactions get confirmed, but may be reverted in the future.
(c) Transactions are included in the chain, but may not be confirmed.
(d) No transactions ever make it to the chain.

Solution: If the non-eclipsing assumption no longer holds, the network is partitioned.
The proof-of-work longest chain protocol is not safe, as different chains can be built
in different parts of the network partition. If there exists a different longer chain in
one of the network parts, the adversary can broadcast it to other parts and unconfirm
the local chains. However, if at least one honest miner resides in one of the partitions,
the chain will make progress due to chain growth, and transactions will keep getting
k-confirmed, albeit at a slower rate.

22. How are peers discovered in a peer-to-peer network such as a blockchain network?

(a) The client connects to a secure HTTPS server which gives us a list of peers.
(b) The peers are discovered by connecting to a decentralized database such as a

shared instance of MySQL, Postgres, or Mongodb that contains a list of all known
peers. The database is replicated to ensure reliability.

(c) The list of peers is fixed and includes at least one known trustworthy honest
peer such as the IP of one of the developers. This list is never updated to avoid
introducing adversarial peers.

(d) Some peers are hardcoded in the code so that we can connect to them initially.
The rest are discovered by asking our peers for their peers.

Solution: An HTTPS server and a database such as MySQL are centralized solu-
tions. So is relying on the developers. Recall that our Marabu protocol uses (d) as
a peer discovery mechanism, as do other peer-to-peer systems (Bitcoin, Ethereum,
BitTorrent).

23. What is the best way to avoid denial-of-service attacks of fake blocks?

(a) Check the proof-of-work first, then download the transactions, then download the
parent.

Practice Final Page 8 of 27

(b) Download and validate the transactions first, then check the proof-of-work, then
download the parent.

(c) Download and validate the transactions first, then download the parent, and
finally check the proof-of-work.

(d) Make sure the parent is available first by recursively downloading it and validating
it, then check the proof-of-work, and only afterwards download the transactions.

Solution: Generating valid transactions and a correct chain structure is computa-
tionally fast for an attacker but finding a block with correct proof-of-work is the most
computationally expensive part. Thus, the best way is to verify the proof-of-work first.
Think of how long it would take for an adversary to cause a node to process 1 TB of
data: If proof of work is checked first, this will take a very long time.

24. A malicious full node, when asked by an SPV node, pretends a transaction is in the
chain, while it is not. What will the SPV node do?

(a) Accept the transaction, as it cannot check it itself; it relies on the full node for
security.

(b) Ask other full nodes if they have accepted the transaction and take a majority
vote.

(c) Reject the transaction, as the Merkle proof does not check out.

(d) Reject the transaction, because the transaction signature does not validate.

Solution: As the SPV node has downloaded the stable header chain, the adversary
cannot provide a valid Merkle tree inclusion proof that passes the check.

25. Why does the Chain Growth property require a minimum number of rounds parameter
s?

(a) So that the adversary has enough time to run.

(b) So that the expectation E[X] attains the lower bound we require.

(c) So that the Chernoff bound can be applied to the number of successful rounds X.

(d) So that the adversarially successful queries Z concentrate to a value lower than
the convergence opportunities Y .

Solution: The Chain Growth Lemma relies on X to ensure the chain grows. The
concentration of the X variable near its mean is ensured by typicality, which is proven
by the Chernoff bound. The running time of the adversary is irrelevant to chain growth,
as the adversary may choose to withhold her blocks. The expectation of X does not
change with time. Lastly, the relationship of Z with respect to Y is useful for proving
Common Prefix, not Chain Growth.

26. When representing the UTXO model as a State Machine Replication problem, what is
the type of the output of the transition function δ(st, tx)?

Practice Final Page 9 of 27

(a) A UTXO transaction.

(b) The current balances of the whole system, together with the nonce of each account.

(c) A set of unspent outputs.

(d) True or false, depending on whether the transaction can be applied to the previous
state.

Solution: The output of the transition function is the system state. In UTXO model,
the state is the set of all unspent outputs.

27. In a proof-of-work longest chain protocol, who can predict which miner will win the
next block?

(a) Anybody.

(b) The adversary.

(c) The miner who will win the next block.

(d) Nobody.

Solution: The proof-of-work lottery is random and unpredictable.

28. In a proof-of-stake longest chain protocol using a hash function for the puzzle, who
can predict which node will win in the next round?

(a) Anybody who knows the public keys of the nodes.

(b) The adversary.

(c) The node who will win in the next round.

(d) Nobody.

Solution: In such a protocol, the puzzle includes the hash of Genesis, a round number
and a public key of a protocol participant. Thus, anyone who knows the public keys
of the nodes can predict the next round winner.

Practice Final Page 10 of 27

(8 points) Problem 2
Consider a proof-of-work longest chain protocol with a 1/3 adversary in a population of
n = 3 nodes with a hash rate of q = 3. The security parameter is κ = 256.

1. (2 points) What is the honest advantage δ?

Solution: The honest advantage δ:

t < (1− δ)(n− t)⇒ (1)

δ < 1− t

n− t
(2)

=
1

2
(3)

2. (2 points) Choose numeric parameters ϵ and f to ensure safety and liveness.

Solution: Balancing equation:
3ϵ+ 3f ≤ δ

We can choose ϵ = f = δ
6
< 1

12
. On the borderline case, we can set ϵ = f = 1

12
.

3. (2 points) Calculate the exact numeric probability p of a successful query.

Solution: The probability of honest parties getting a block within the unit of time:

f = 1− (1− p)q(n−t) ⇒ (4)

p = 1− (1− f)
1

q(n−t) (5)
= 0.0144 (6)

4. (2 points) Calculate a numeric value for the mining target T to match the above.

Solution:

p =
T

2κ
⇒ (7)

T = 2κp (8)
= 22562−6.118 (9)
≈ 2250 (10)

You can use a calculator such as Python and round your numbers to three significant
digits.

Practice Final Page 11 of 27

(20 points) Problem 3
Consider the longest chain proof-of-stake protocol we studied in class. We will look at an
instantiation where ∆ = 1 second, n = 100, κ = 128, Tp = 2118. For answering the questions
below, you are free to choose the parameter k in the confirmation rule. You can use a
calculator such as Python and round your numbers to three significant digits.

1. First suppose all 100 nodes are honest.

(a) (1 point) Compute the expected growth rate of the longest chain, in blocks per
second.
Solution: In the longest chain proof-of-stake protocol we studied, every staker
has one coin which results in one query per round. The probability of a successful
query:

p =
Tp

2κ
(11)

= 2−10 (12)
≈ 0.001 (13)

The probability of a successful round, i.e. the probability that at least one honest
staker finds a block:

f = 1− (1− p)n (14)
= 1− (0.999)100 (15)
= 0.095 (16)

The chain grows by one block if the round is successful or remains of the same
length otherwise. Thus, the expected chain growth rate is 0.095 blocks per second.

(b) (1 point) Compute the expected growth rate of the k-confirmed chain, in blocks
per second. (The k-confirmed chain is the portion C[:− k].)
Solution: Every staker is honest, so every block gets confirmed after becoming
k-deep. Thus, the expected growth rate of the k-confirmed chain is 0.095 blocks
per second.

(c) (2 points) If we double Tp, does the expected growth rate of the longest chain
double, more than double, or less than double? What about the growth rate of
the k-confirmed chain?
Solution: New target is Tp = 2119. The probability of a successful query p =
2−9 = 0.002 and the probability of a successful round f = 0.181. The expected
chain growth rate is 0.181 blocks per second which is less than double of the
previous value of the expected chain growth rate. Intuitively, this is because
when there are multiple successful honest queries in the same round, the chain
can still only grow by one block.

2. Now suppose 20 of the 100 nodes are adversary, the other 80 are honest.

Practice Final Page 12 of 27

(a) (1 point) Compute a tight lower bound on the expected growth rate of the longest
chain. (A “lower bound” means that it is a lower bound irrespective of the adver-
sary’s attack strategy; “tight” means that the lower bound is attainable for some
adversary’s attack strategy.)
Solution: The honest majority assumption holds for such parameters. However,
adversary can choose not to participate in the protocol. Thus, the probability
of a successful round, i.e. the probability that at least one honest staker finds a
block:

f = 1− (1− p)n (17)
= 1− (0.999)80 (18)
= 0.077 (19)

Thus, a lower bound on the expected growth rate of the longest chain is 0.077
blocks per second. Due to Chain Growth, we know that the adversary can’t reduce
the growth rate any further.

(b) (1 point) Compute a tight lower bound on the expected growth rate of the k-
confirmed chain.
Solution: Every block in the chain gets confirmed when it becomes k-deep. Thus,
a lower bound on the expected growth rate of the k-confirmed chain is 0.077 blocks
per second.

(c) (2 points) Is the protocol safe? Is the protocol live?
Solution: This protocol is both safe and live since t = 20 < 80 = n− t

3. Now suppose 20 nodes are still adversary, but instead of having the full 80 honest nodes
online, 30 of them decide not to participate in the protocol and went on vacation to
the Bermudas. However, the protocol designer does not know this and the protocol
parameters are not adjusted.

(a) (1 point) Compute a tight lower bound on the expected growth rate of the longest
chain.
Solution: There are 70 nodes in total: 20 adversarial and 50 honest. Again, the
honest majority assumption holds for such parameters. However, the adversary
can choose not to participate in the protocol. Thus, the probability of a successful
round, i.e. the probability that at least one honest staker finds a block:

f = 1− (1− p)n (20)
= 1− (0.999)50 (21)
= 0.049 (22)

Thus, a lower bound on the expected growth rate of the longest chain is 0.049
blocks of transactions per second. Again, the adversary can’t reduce growth rate
further due to the Chain Growth virtue.

Practice Final Page 13 of 27

(b) (1 point) Compute a tight lower bound on the growth rate of the k-confirmed
chain.
Solution: Every block gets confirmed when it becomes k-deep. Thus, a lower
bound on the growth rate of the k-confirmed chain is 0.049 blocks of transactions
per second.

(c) (2 points) Is the protocol safe? Is the protocol live?
This protocol is both safe and live since t = 20 < 50 = n− t

4. Now suppose a further 35 honest nodes went on vacation.

(a) (1 point) Compute a tight lower bound on the expected growth rate of the longest
chain.
Solution: There are 35 nodes in total: 20 adversarial and 15 honest. Note that
the honest majority assumption does not hold for such parameters. However,
adversary can choose not to participate in the protocol. The probability of a
successful round, i.e. the probability that at least one honest staker finds a block:

f = 1− (1− p)n (23)
= 1− (0.999)15 (24)
= 0.015 (25)

Thus, a lower bound on the expected growth rate of the longest chain is 0.015
blocks per second. Even though honest majority doesn’t hold, Chain Growth still
holds, so the adversary cannot reduce the growth rate further.

(b) (1 point) Compute a tight lower bound on the expected growth rate of the k-
confirmed chain.
Solution: A lower bound on the expected growth rate of the k-confirmed chain
is 0.015 blocks per second.

(c) (2 points) Is the protocol safe? Is the protocol live?
Solution: Such protocol is not safe and not live since the honest majority as-
sumption does not hold.

5. (4 points) A protocol is said to be available if it is safe and live whenever the number
of honest nodes online is greater than the number of adversary nodes. Is the longest
chain PoS protocol available?

Solution: As examples in parts 3 and 4 illustrate, PoS longest chain protocol is
available.

Practice Final Page 14 of 27

(18 points) Problem 4
Consider the Streamlet protocol we studied in class.

1. (2 points) Streamlet is said to be partition tolerant whenever the number of honest
nodes exceeds 2n/3, where n is the total number of nodes. Explain what that means.

Solution: A protocol is partition tolerant if it is safe under network partition. In the
last lecture we showed that under network partition Streamlet is safe but not live.

2. (2 points) Streamlet is said to be 1/3-accountable. Explain what that means.

Solution: This means that in the event of a safety violation, at least 1
3
n nodes are

provably identified as protocol violators. In the case of Streamlet, to produce a safety
violation at least 1

3
n nodes have to double vote, which can be provably identified via

signatures.

3. Now suppose ∆ = 1 second and n = 100 nodes and the nodes are all honest.

(a) (1 point) Compute the expected growth rate of the longest notarized chain (in
blocks per second).
Solution: We assume that the network is synchronous. If every node is honest,
then every proposed block is valid and gets notarized. Thus, the chain will grow
by one block every epoch, which is 2∆ = 2 s. The growth rate is 1

2
block per

second.

(b) (1 point) Compute the expected growth rate of the finalized chain (in blocks per
second).
Solution: Since every node is honest, every notarized block from epoch i, i > 1
gets finalized in epoch i+1. The growth rate of the finalized chain is also 1

2
block

per second.

4. Now suppose 20 of the 100 nodes are adversary and the other 80 are honest.

(a) (1 point) Compute a tight lower bound on the expected growth rate of the longest
notarized chain. (A “lower bound” means that it is a lower bound irrespective of
the adversary’s attack strategy; “tight” means that the lower bound is attainable
for some adversary’s attack strategy.)
Solution: The number of adversarial nodes is 20 < 100

3
, therefore, they cannot

cause a safety violation. However, adversary can choose to not participate in the
protocol, which results in slowing down the chain growth. In such case, only 80
out of 100 nodes propose blocks. 80 ≥ 2

3
n ≈ 67, so there are enough honest nodes

get proposed blocks notarized. A lower bound on the expected growth rate of the
longest chain 80

100
· 1
2
= 2

5
blocks per second.

(b) (1 point) Compute a lower bound on the expected growth rate of the finalized
chain. (Your lower bound does not need to be tight. However if the lower bound
is not tight, it must be positive.)

Practice Final Page 15 of 27

Solution: Recall Streamlet Liveness theorem - if there are five consecutive epochs
with honest leaders, then at least one more block is confirmed at the end of the
five epochs compared to the beginning. The probability of five consecutive epochs
being honest is (80

100
)5 = 0.328 ≈ 1

3
. So, an upper bound on the average time for

a block to get finalized is 3 superepochs or 30 s. Hence, a lower bound on the
growth rate of the finalized chain is 1

30
blocks per second.

(c) (2 points) Is the protocol safe? Is it live?
Solution: The protocol is safe since t = 20 < 100

3
= 33. The network is syn-

chronous, so the the protocol is also live.

5. Now suppose 20 nodes are still adversary, but instead of having the full 80 honest nodes
online, 30 of them decide not to participate in the protocol and went on vacation to
the Bermudas. However, the protocol designer does not know this and the protocol
parameters are not adjusted.

(a) (1 point) Compute a tight lower bound on the expected growth rate of the longest
notarized chain.
Solution: The number of adversarial nodes is 20 < 100

3
, therefore, they cannot

cause a safety violation. However, adversary can choose to not participate in the
protocol. There are only 50 < 2

3
n ≈ 67 honest nodes. Blocks do not receive

enough votes and do not get notarized. Thus, a lower bound on the expected
growth rate of the longest notarized chain is 0.

(b) (1 point) Compute a lower bound on the expected growth rate of the finalized
chain. (Your lower bound does not need to be tight. However if the lower bound
is not tight, it must be positive.)
Solution: A lower bound on the expected growth rate of the finalized chain is
also 0.

(c) (2 points) Is the protocol safe? Is the protocol live?
Solution: t = 20 < 100

3
= 33, so by the quorum intersection argument, adver-

sarial nodes cannot produce two notarized blocks in the same epoch. However,
if the adversary chooses not to participate, no block ever gets notarized. Thus,
such protocol is still safe but not live.

6. (4 points) A BFT protocol is said to be available if it is safe and live whenever the
number of honest nodes online is greater than twice the number of adversary nodes.
Is Streamlet available?

Solution: As the example in part 5 illustrates, Streamlet is not available. The number
of honest nodes online is 50, which is greater than twice the number of adversarial
nodes, 20. However, we showed that such protocol is still safe but not live, so it is not
available.

Practice Final Page 16 of 27

(18 points) Problem 5
Answer the following questions in the Backbone model with static difficulty.

1. Consider executions with parameters (n, q, t, f, ϵ, T, µ, ℓ, s, τ, u, k) of your choice, with-
out honest majority, but with n− t > 0.

(a) (4 points) Describe an execution where Safety is violated.
Solution: See Figure 1. The parameters are n = 12, t = 8, k = 3.

Figure 1: Private attack in dishonest majority execution. White blocks are honest and red
blocks are adversarial. Adversary mines a chain in private and releases it after honest nodes
have adopted the honest chain with 4 blocks, displacing the honest chain. The honest chain
contains a transaction tx but the adversarial chain is longer and does not contain tx. After
the honest block in round 23 is mined, tx gets confirmed because it is in a k-deep block.
Adversary releases her chain after that, deconfirming tx and causing a safety violation.

(b) (4 points) Describe an execution where Liveness is violated.
Solution:
See Figure 2. Choice of n = 10 and t = 5 results in the minimum of chain quality
of µ ≥ 1− t

n−t
= 0. Thus, the adversary can cause a liveness violation. Such an

execution can occur with high probability because due to adversarial majority,
the adversary will get a block before the honest parties most of the time.

(c) (1 point) Is it possible to have an execution with a Safety violation if chain quality
is not violated?
Solution: See Figure 3.

(d) (1 point) Is it possible to have an execution with a Liveness violation if chain
quality is not violated?
Solution: No, chain quality and chain growth imply ledger liveness. Since chain
quality is not violated and chain growth is not violated even in an execution with
adversarial majority, liveness is also not violated.

Practice Final Page 17 of 27

Figure 2: Selfish mining strategy. White blocks are honest and red blocks are adversarial.
Recall that selfish mining adversary mines at the tip of the longest chain but keeps her blocks
private. Every time an honest block is mined, she releases her block at the same level if she
has one. Honest block mined in round 3 contains a transaction tx but gets displaced by an
adversarial block. This adversarial block does not contain any transactions. This process
gets repeated at every round an honest block is mined, so no transactions get included in the
chain, causing a liveness violation. In this example, liveness is violated for u = 13 because
honest parties attempted to include tx in rounds 3, ..., 16 but the ledger at round 17 (with
k = 3) does not contain tx.

For questions (a) and (b) above: What is the strategy of the adversary? What blocks
and what transactions must the adversary produce to cause this ledger virtue violation?
Draw the block tree and timeline of the execution illustrating which round each block
was mined in, which transactions are included in which block, whether a block was
computed by an honest or an adversarial party, and which honest parties have adopted
which chain. You do not need to calculate values of parameters that are not necessary
to support the respective statement.

2. Consider an execution with n = 3 parties of which t = 1 is adversarial, target T = 2226,
security parameter κ = 256 and hash rate q = 1, and k = 6.

(a) (2 points) Calculate the numeric probability of a successful round.
Solution: The probability of a successful query:

p =
T

2κ
(26)

= 2−30 (27)

The probability of a successful round:

f = 1− (1− p)q(n−t) (28)
= 1.86 ∗ 10−9 (29)

(b) (2 points) Calculate the numeric probability of a convergence opportunity.
Solution: Probability of a convergence opportunity is lower bounded by q(n −
t)p(1− p)q(n−t−1) = 1.86 ∗ 10−9. Since the probability f is quite small, this bound
is very close to the actual value.

Practice Final Page 18 of 27

Figure 3: Safety violation scenario for k = 4. White blocks are honest and red blocks are
adversarial. Rounds 7, 11 and 19 are convergence opportunities. Adversary matches honest
blocks in these rounds with her block, forcing honest parties to work on different chains
C and C ′. To match the honest block in round 7, she releases her block from round 3. In
round 11, she matches the honest block with her block mined in the same round. The honest
block in round 19 is matched by adversarial block from round 17. C contains tx, which gets
confirmed in round 19 while C ′ does not contain it. However, chain quality is not violated:
µ = 3

5
and µ′ = 4

5
.

(c) (2 points) What is the numeric probability that the first 10 rounds are all suc-
cessful?
Solution: The probability that the first 10 rounds are all successful is f 10 =
5.02 ∗ 10−88.

You can use a calculator such as Python and round your numbers to three significant
digits.

3. (2 points) In the above scenario, we give the adversary the fictitious ability to “snoop”
all the queries to the Random Oracle and to choose whatever κ-bit answer she wishes
to one (honest or adversarial) fresh query per round. The Random Oracle continues to
use its cache to respond consistently. Can this adversary break common prefix? What
strategy should she follow?

Solution: The adversary can snoop one of her own queries in every round and get
one successful block per round. All she needs to do is make sure she gives (different)
responses that are all below the target T . She can use this ability to mine an adversarial
chain in private, starting at height h until she gets k blocks. She will likely be able
to do that much prior to the honest parties mining a chain of height h + k, as she
can get one valid block per round. When the honest parties mine their chain of height
h+k, the adversary releases her privately mined h+k chain, causing a common prefix
violation on the chain. If she had also included conflicting transactions in the chains,

Practice Final Page 19 of 27

she could additionally cause a safety violation.

4. (3 bonus points) In the above scenario, we give the adversary the fictitious ability to
“snoop” all the queries to the Random Oracle and to choose whatever κ-bit answer she
wishes to one (honest or adversarial) fresh query per execution. The Random Oracle
continues to use its cache to respond consistently. Can this adversary break common
prefix? What strategy should she follow?

Solution: The adversary starts mining a new, independent chain C ′, whose first block
C ′[0] uses as previd the value 0κ (any fresh value below T will do). This chain does not
start from the genesis block, for now. When she has mined such a chain of length k,
she stops mining and waits. In the meantime, the honest parties have mined a larger
chain C, but no matter. The adversary waits for an honest party to make a query that
mines on top of C and snoops on that query. She forces the random oracle to give
value 0κ as the output for that query. This is a valid block B, as 0 < T , and B is
extending C which extends genesis. However, now C ′ is a chain that extends B and is
k blocks longer than C, and also extends genesis. The adversary waits for the honest
parties to mine a further k blocks on top of their own chain, and subsequently releases
C ′, causing a common prefix violation. If she had also included conflicting transactions
in the chains, she could additionally cause a safety violation.

Practice Final Page 20 of 27

Reference

Variables

• κ: The security parameter

• A: The adversary

• Π: The honest protocol

• G: The genesis block

• ∆: The network delay (in backbone, ∆ = 1)

• H: The hash function

• n: The total number of parties

• t: The adversarial number of parties

• q: Hash rate of one party per round

• T : The mining target

• p: Probability of a successful query

• δ: The honest advantage

• k: Common prefix parameter

• µ: Chain quality parameter (the honest ratio of blocks)

• ℓ: Chain quality chunk length (in blocks)

• τ : Chain growth rate (in blocks per round)

• s: Chain growth duration (in rounds)

• f : Probability of successful round

• ϵ: Chernoff bound error

• λ: Chernoff bound duration

• X: Successful round indicator

• Y : Convergence opportunity indicator

• Z: Adversarially successful query indicator

Practice Final Page 21 of 27

Formulae

• The honest majority assumption: t < (1− δ)(n− t).

• The balancing equation: 3f + 3ϵ ≤ δ.

• The proof-of-work equation: H(B) ≤ T .

• The proof-of-stake equation: H(s0 ∥ pk ∥ r) ≤ Tp.

Algorithms

Algorithm 1 The collision resistance game.
1: function CollisionH,A(κ)
2: x1, x2 ← A(1κ)
3: return x1 ̸= x2 ∧Hκ(x1) = Hκ(x2)
4: end function

Algorithm 2 The preimage resistance game.
1: function PreimageH,A(κ)

2: x
$← {0, 1}2κ

3: y ← Hκ(x)
4: x∗ ← A(y)
5: return Hκ(x

∗) = Hκ(x)
6: end function

Algorithm 3 The second preimage resistance game.
1: function 2nd-PreimageH,A(κ)

2: x
$← {0, 1}2κ

3: x′ ← A(x)
4: return Hκ(x) = Hκ(x

′) ∧ x ̸= x′

5: end function

Practice Final Page 22 of 27

Algorithm 4 The existential forgery game for a signature scheme (Gen, Sig, V er).
1: function existential-forgery-gameGen,Sig,V er,A(κ)
2: (pk, sk)← Gen(1κ)
3: M ← ∅
4: function O(m)
5: M ←M ∪ {m}
6: return Sig(sk,m)
7: end function
8: m,σ ← AO(pk)
9: return Ver(pk, σ,m) ∧m ̸∈M

10: end function

Algorithm 5 The Random Oracle
1: r ← 0
2: T ← {} ▷ Initiate Cache
3: Q← 0 ▷ q for honest parties, qt for adversary
4: function Hκ(x)
5: if x ̸∈ T then ▷ First time being queried
6: if Q = 0 then ▷ Out of Queries
7: return ⊥
8: end if
9: Q← Q− 1

10: T [x] $← {0, 1}κ
11: end if
12: return T [x] ▷ Return value from Cache
13: end function

Practice Final Page 23 of 27

Algorithm 6 The environment.
1: r ← 0
2: function Zn,t

Π,A(1κ)

3: G $← {0, 1}κ ▷ Genesis block
4: for i← 1 to n− t do ▷ Boot stateful honest parties
5: Pi ← new Π(G)
6: end for
7: A←new A(G, n, t) ▷ Boot stateful adversary
8: M ← [] ▷ 2D array of messages
9: for i← 1 to n− t do

10: M [i]← [] ▷ Each honest party has an array of messages
11: end for
12: while r < poly(κ) do ▷ Number of rounds
13: r ← r + 1
14: M ← ∅
15: for i← 1 to n− t do ▷ Execute honest party i for round r
16: Q← q ▷ Maximum number of oracle queries per honest party (Section 2)
17: M ←M ∪ {Pi.executeH(M [i])} ▷ Adversary collects all messages
18: end for
19: Q← tq ▷ Max number of Adversarial oracle queries
20: M ← A.executeH(M) ▷ Execute rushing adversary for round r
21: for m ∈M do ▷ Ensure all parties will receive message m
22: for i← 1 to n− t do
23: assert(m ∈M [i]) ▷ Non-eclipsing assumption
24: end for
25: end for
26: end while
27: end function

Practice Final Page 24 of 27

Algorithm 7 The honest party

1: G ← ϵ
2: function Constructor(G ′)
3: G ← G ′ ▷ Select Genesis Block
4: C ← [G] ▷ Add Genesis Block to start of chain
5: round ← 1
6: end function
7: function Execute(1κ)
8: C̃ ← maxvalid(C, M̄ [i]) ▷ Adopt Longest Chain in the network
9: if C̃ ̸= C then

10: C ← C̃
11: Broadcast(C) ▷ Gossip Protocol
12: end if
13: x← Input() ▷ Take all transactions in mempool
14: B ← PoW(x,H(C[−1]))
15: if B ̸= ⊥ then ▷ Successful Mining
16: C ← C||B ▷ Add block to current longest chain
17: Broadcast(C) ▷ Gossip protocol
18: end if
19: round ← round+1
20: end function
21: function Read
22: x← ϵ ▷ Instantiate transactions
23: for B ∈ C do
24: x← x||B.x ▷ Extract all transactions from each block in the chain
25: end for
26: return x
27: end function

Practice Final Page 25 of 27

Algorithm 8 Mining
1: function powH,T,q(x, s)
2: ctr

$← {0, 1}κ ▷ Randomly sample Nonce
3: for i← 1 to q do ▷ Number of available queries per party
4: B ← s||x||ctr ▷ Create block
5: if H(B) ≤ T then ▷ Successful Mining
6: return B
7: end if
8: ctr ← ctr +1
9: end for

10: return ⊥ ▷ Unsuccessful Mining
11: end function

Algorithm 9 The longest chain rule
1: function maxvalidG,δ(·)(C)
2: Cmax ← [G] ▷ Start with current adopted chain
3: for C ∈ C do ▷ Iterate for every chain received through gossip network
4: if validateG,δ(·)(C) ∧ |C| > |Cmax| then ▷ Longest Chain Rule
5: Cmax ← C
6: end if
7: end for
8: return Cmax

9: end function

Practice Final Page 26 of 27

Algorithm 10 Chain Validation
1: function validateG,δ(·)(C)
2: if C[0] ̸= G then ▷ Check that first block is Genesis
3: return false
4: end if
5: st ← st0 ▷ Start at Genesis state
6: h← H(C[0])
7: st ← δ∗(st, C[0].x)
8: for B ∈ C[1:] do ▷ Iterate for every block in the chain
9: (s, x, ctr)← B

10: if H(B) > T ∨ s ̸= h then ▷ PoW check and Ancestry check
11: return false
12: end if
13: st ← δ∗(st, B.x) ▷ Application Layer: update UTXO & validate transactions
14: if st = ⊥ then
15: return false ▷ Invalid state transition
16: end if
17: h← H(B)
18: end for
19: return true
20: end function

Chain Virtues

1. Common Prefix (k). ∀ honest parties P1, P2 adopting chains C1, C2 at any rounds
r1 ≤ r2 respectively, C1[: −k] ⪯ C2 holds.

2. Chain Quality (µ, ℓ). ∀ honest party P with adopted chain C, ∀i any chunk C[i : i+ℓ]
of length ℓ > 0 has a ratio of honest blocks µ.

3. Chain Growth (τ, s). ∀ honest parties P and ∀r1, r2 with adopted chain C1 at round
r1 and adopted chain C2 at round r2 ≥ r1 + s, it holds that |C2| ≥ |C1|+ τs.

Ledger Virtues

• Safety: For all honest parties P1, P2, and rounds r1, r2, LP1
r1

is a prefix of LP2
r2

or vice
versa.

• Liveness(u): If all honest parties attempt to inject a transaction tx at rounds r, ..., r+
u, then for all honest parties P , tx will appear in LP

r+u.

Practice Final Page 27 of 27

