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Preface

After defending my PhD thesis in 2020, I swore to take a good break from the stress
of academia, and spent a gap year in Athens, Greece. This turned out to be the
most prolific year of my career. In the absence of external pressure, I could finally
get some research done.

It was during that summer of 2021 that I started designing a new course on
Blockchain Foundations. This 56-hour course aimed to answer three questions:

1. What are blockchains?

2. How do they work?

3. Why are they secure?

I found that there was already a corpus of works describing the details of
blockchains. However, that literature was not quite what I was looking for. Some
of it was scattered across informal blog posts and YouTube videos that explained
high-level ideas tailored towards end users or hobby scientists, and never went down
to the mathematical details. Other writings were very precise on the engineering
level — talking about this or that byte of a packet — but never explained the why
behind the design decisions, and in particular they were missing security proofs
against arbitrary adversaries. Many of the technical specifications of various cryp-
tocurrencies fall into this category. Lastly, a body of works of high quality does
provide mathematical proofs and justification for the whys, but these are in the
form of scientific papers that are extremely dense and beyond the reach of even
advanced graduate students, let alone undergraduates dipping their feet on block-
chain science for the first time. I decided it’s about time to write a series of lecture
notes on the foundations to accompany the lectures.

As I was designing the course, I trialed it to a group of my computer science
colleagues with no prior blockchain experience: Giannis Gkoulioumis, Nikolaos Ka-
marinakis, Apostolos Tzinas. Over the course of that summer, we spent 52-hours
together over notebooks of notes, discussing the proofs of bitcoin backbone and the
construction of Merkle trees. They also solved a series of programming exercises
which I designed to accompany the course and pertained to creating their own
blockchain from scratch, each building their own full node. Their feedback gave me
the opportunity to refine the course and prepare it for teaching.

I had the first opportunity to teach this course — which I nicknamed Marabu1

after the eponymous poem of Nikos Kavvadias — in an official capacity during the
spring quarter of 2022 at Stanford University. It was a graduate-level course named

1The misspelling is intentional, as it makes it easier to Google.
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EE374 - Blockchain Foundations. While most of the material was based on my
past summer, my co-instructor David Tse and I redesigned parts of the course to
meet the time constraints of the quarter system, and to include some new material.
To our surprise, the course was mostly attended by undergraduates. The course
was well received, largerly due to the great work of our first teaching assistants,
Srivatsan Sridhar and Kamilla Nazirkhanova.

At the time, the lecture notes were still in my handwritten notebooks. As I
taught the lectures on the whiteboard, several students helped out with digitizing
the lecture notes to form the first version of this book. These scribes were Kaylee
Renae George, Kenan Hasanaliyev, Koren Gilbai, Ben Choi, Stephen Su, Nathaniel
Masfen-Yan, Schwinn Saereesitthipitak, Kachachan Chotitamnavee, Alan Zhang,
Taher Poonawala, Scott Hickmann, Lyron Co Ting Keh, Sam Liokumovich, Kaili
Wang, Edward Vendrow, Cathy Zhou, Yifan Yang, Michael Nath, Coleman Smith,
Solal Afota, Suppakit Waiwitlikhit, Lora Xie, Bryan Chiang, Lucas Xia, Albert Pun,
Gordon Chi, Jack Liu, Neetish Sharma, Sergio Charles, Priyanka Mathikshara, and
John Guibas. Even though these notes were later rewritten many times, I’m deeply
grateful to all, because they made the first version happen, and it would not have
started without them.

We repeated this course during winter quarter of 2023. There, our teaching
assistants were Kenan Hasanaliyev and Scott Hickmann who further helped refine
the course material and notes.

This book is the result of assembling those lecture notes into a more organized
format. We want the advanced undergraduate or beginning graduate student to be
able to comfortably read it. The prerequisites are a basic understanding of proba-
bilities; an expert level of programming knowledge, ideally with some network pro-
gramming experience; some exposure to computer science through an introductory
algorithms or computability course, and familiarity with computational reductions;
and, of course, the always elusive mathematical maturity.

This book does not talk about Bitcoin or Ethereum. It doesn’t speak about the
particularities of these implementations, such as how Bitcoin encodes addresses, or
how Ethereum’s particular programming language works. Instead, we go back to
the foundations to understand the basic components that make a blockchain from
first principles. The principles that we explore apply to most blockchain systems,
and even decentralized ledger technology systems that are not based on a blockchain
per se. The goal is to learn how to argue about the security of these systems by
walking through the components of a simple UTXO proof-of-work blockchain design
first. The same design principles apply when designing more complicated systems
such as proof-of-stake blockchains. Upon completing this book, the reader will know
what blockchains are, how they work, and why they are secure. They will also have
developed the tools and background necessary to argue about the security of more
complex protocols.
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Chapter 1

A Big, Bad World

1.1 The Nature of Money
Before money, there was debt [18]. Money is a yardstick for measuring it. Some-
times it takes the form of a gold coin. Not useful in itself, one accepts it because
one assumes other people will. Modern fiat money is not backed by gold, but takes
the form of pieces of paper bills or, more often, bits in the computer systems of
banks. Regardless of their manifestation, all forms of money are debt, which is a
social relation [19].

Money has a long history. A tale told about its origins is of a world of barter
in which people would visit markets to exchange ten chickens for an ox; money, it
is said, was invented to ease the burden of figuring out exchange rates. This is a
myth. No such barter societies have ever existed prior to the invention of money.
Instead, historically, societies used to be gift economies, in which people were mostly
self-reliant on their broader families, and they gifted goods to each other regularly
within their villages. These relationships are based on trust. The reliance on some
form of trust on society will be a motif which will reemerge as we try to redesign
money in the form of a blockchain.

The idea that one can transact with a stranger without trusting her is an idea
that came about with the invention of money. Money came about as a means of
tracking debt accumulated through violence such as wars and slavery. Historical
forms of money had a physical manifestation: sea shells or salt. The word salary
we use today hints at this history. Gold and silver were later adopted. Modern
money, such as USD, used to have backing in gold, so that one could exchange their
USD money for gold. The gold standard for USD was abolished in 1971. After
this, money issued is known as fiat, because it is by social agreement that we give
it value. Money is a collective delusion: If, one day, we all stopped believing in
money, it would instantly be worthless. The same is true for gold, sea shells, and
salt. Money is a social construct.

Money functions as a medium of exchange, as a common measure of value or unit
of account, as a standard of value or standard of deferred payment, and a store of
value [20]. These functions of money rely on the relationship of the individual with
the economic community that accepts money. Each monetary transaction between
two parties is never a “private matter” between them, because it translates to a
claim upon society [31].
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This gives rise to the need of consensus. The economic community must be able
to ascertain, in principle, whether a monetary transaction is valid according to its
rules. In a good monetary system, parties of the economic community must globally
agree on the conclusions of such deductions. In simple words, when someone pays
me, I must know that they have sufficient money to do so, and that this money given
to me will be accepted by the economic community when I later decide to spend
it. This judgement of validity consists of two parts: First, that the money in use
has been minted legitimately in the first place. Secondly, that this money rightfully
belongs to the party who is about to spend it, and has not been spent before,
to protect against double spending, or ownership tracking. Consensus pertains to
ensuring both correct minting and correct transfers. For money to have value, it
must be scarce. Scarcity must be ensured both during minting and during transfers.
Scarcity is a necessary, but not sufficient, property of money.

The problem of consensus is solved differently in different monetary systems.
Gold coins had stamps whose veracity could be checked, while paper bills have
watermarking features making them difficult to duplicate. Such physical features
ensure the legitimacy of minting. The problem of double spending is trivial when it
comes to physical matter: If I give a gold coin to someone, I no longer hold that gold
coin and cannot also give it to someone else. When coins are digitized, the problem
of who owns what is solved by the private bank and payment processors. A private
bank centrally maintains the balance of a bank account to ensure a corresponding
debit card cannot spend more money than it has. In this case, a vendor’s terminal
connects to the bank’s servers to check the validity of the payment (and security
can only be ensured while the terminal is online). These cases involve a trusted
third party, the bank or the payment processor, to maintain a balance and make a
judgement on whether a transaction is valid. The central bank is relied upon for
the legitimacy of minting. Payment processors and banks who maintain account
balances and make a judgement on whether a transaction is valid are relied upon to
prevent double spending. The economic community depends on these third parties
and trusts them for availability and truthfulness.

The cypherpunk political movement and the wave of cryptographers working
on protocols in general have an inherent hatred for trusted third parties. For the
former, they amount to centralization of political power which they wish to see
eliminated. For the latter, it constitutes a technical and intellectual challenge –
if the role of the trusted third party is fully algorithmizable, why not replace the
party by a protocol ran by the economic community themselves? It is somewhere
in the intersection of the two that blockchain protocols appeared.

Trusted third parties are undesirable for four reasons. First, the authority may
fail, not because of nefarious purposes, but because of a mistake. There might be a
power loss and its servers may be shut down, causing availability issues. Secondly,
a trusted third party may become corrupted in the future, creating the possibility
of abuse. While the authority is trustworthy today, who knows about tomorrow?
Third, the authority may be honest in and of itself, but an external adversary may
breach into its systems, especially if it is digital. Fourth, different parties may not
have a mutual authority that they both trust. For example, the US government
and the Chinese government may not both want to rely on either of the US federal
reserve, or the Chinese central bank. Trusted parties are liabilities for the people
using them, but also liabilities for themselves. If a bank falls victim to a digital
breach, it may be held responsible for losses incurred. It is thus often in the best

8



interest of both the community and the central authority itself to remove trust to
the central authority.

How can a trusted central party misbehave? A private bank can conjure up
more money in someone else’s account, or remove money from yours, and one’s only
recourse against such actions, which can be damaging to the economy, is legal. We
rely on the functions of government, a trusted third party, to prevent such actions.
If a bank illegally takes away money from one’s bank account, they can sue the
bank. This is a treatment of adversarial behavior. In the systems we will design,
our goal will be to create systems that prevent adversarial behavior by making it
impossible in the first place; not by detecting it and treating it when it emerges.
These systems will be self-enforcable. Prevention is preferable to treatment.

The question we try to answer is whether we can decentralize money by removing
some of these institutions of trust. We can remove private banks and people can be
their own bank; and we can remove the central bank, and money issuance can be
in the hands of the people. However, some trust in society will necessarily remain,
as money is a social construct. Governments are elected by the people and, in that
sense, express the will of the people. It is a political question whether we want
to remove central parties from the picture. Removing the central bank removes
an important macroeconomic tool from the hands of government, which may have
long lasting and disastrous recession effects. Removing the private bank from the
picture makes each and everyone responsible for their own money: In case your
house in which your computer is stored burns down, you lose your money, contrary
to the case of a bank, where all your documents can be recovered through some
form of legal process. We will provide the means to eliminate centralization, but
it is not always clear that we should. Once we describe the system to do so, we
can choose which centralization parts we want to eliminate. For example, we can
create a system where private banks are unnecessary, but money issuance is still
centralized.

Because money is a social construct and it is conjured by social delusion, it
does not need legal backing to have value. We can rebuild money in the form of
code, as long as we can recreate scarcity, minting and ownership tracking, and we
convince society to adopt it as currency. This is what gives rise to cryptocurrencies.
Similarly, because private contracts between individuals are also a social construct,
we can also recreate these in the form of code. This is what gives rise to smart
contracts.

Money and its functions, as well as contracts and their function, have been
traditionally codified in the form of law. These laws have been created through
centuries of experience and contain a lot of wisdom. As computer scientists, our
role when implementing cryptocurrencies and smart contracts will be to identify the
computational properties of money and contracts. What computational role does
each of the virtues of money play in ensuring its correctness and security? Which of
these can be modified? What are the computational aspects of rules, regulations,
and processes? When money and contracts are implemented in code, and analyzed
in the theoretical framework of computer science, these will become precise and
explicit rather than implicit.
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1.2 The Adversary
Our systems will be designed in the presence of an adversary. This adversary will
have various nefarious goals and may try to act against the rest of the parties. We
will highlight the parties whose interests we want to defend and designate them
as the honest parties. The honest parties follow the protocol as described by us,
the protocol designers. A party beyond this group of designated honest parties is
considered adversarial. The adversary can deviate from the honest protocol and
behave differently from what we designed. We will only provide assurances to the
honest parties when we embark on our security proofs. This follows the path of
cryptography: If you want security assurances, you must play honestly.

We will assume our adversary has access to our source code and we will not
keep this secret. This is a general principle of cryptography known as Kerckhoff’s
Principle. This makes the adversary more powerful. Hence, if we can prove security
against this adversary, we have a stronger protocol. Of course we will need to keep
some secrets from this adversary. These will be things like passwords and secret
keys, which we will be exploring soon.

We consider only one adversary, not multiple. That single adversary can spawn
nodes that are acting on her1 behalf. The treatment in which the adversary is
considered to be a single party with an overarching goal in mind gives the adversary
more power. She is a more powerful adversary than an adversary who is fighting
against another. We will design our protocols to be secure against this single,
overarching adversary.

We will design our systems to be resilient against very powerful adversaries,
such as state actors. Our adversary can really be truly malicious. She can break
laws. She might be irrational and decide to lose money, just so that we suffer,
even if there is no monetary gain for her. She can control corporations. She can
control governments, including the legislative, executive, and judicial branches of
the government. This means she can change the laws and outlaw our protocol.
She can take over a country’s or multiple countries’ courts, issue subpoenas, or kill
people to achieve her goals, and do this all in secret. We will not rely on these
centralized institutions for our security, but will try to design protocols that are
resilient in these settings. In light of this model, it becomes clear that there is
very little we can rely on. For example, we cannot rely on someone proving their
identity by presenting their government-issued passport, as an adversary controlling
the government can issue an arbitrary number of fake passports.

Ideally, we want our protocols to survive and remain operational as long as a
country’s Internet infrastructure is operational, and people are allowed just a mod-
icum of private life. Compare this to centralized services, such as Google’s search,
or Amazon’s market. These services really cannot hope to survive an adversarial
government. A subpoena issued by a court can order them to shut down, and they
must comply. On the contrary, our decentralized protocols will not be subject to
court decisions. In that sense, our protocols are sovereign — they enjoy the same
level of independence as a stand-alone country. For a court to shut down a de-

1As a convention, we will use the female pronouns for the adversary, the male pronouns for
the honest parties, and the neutral pronoun for the challenger. This helps write succinct and
easy to read sentences in which the “he” and “she” pronouns are used with clarity. As blockchain
designers in which adversarial thinking is a central tenet, we will take both roles of the honest
party and the adversary and argue from both sides when designing a protocol and reason about
its security.
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centralized protocol, it cannot order its servers to shut down, because there are no
servers. Instead, it must target each of its participants, a much more difficult task.

The Cryptographic Model
Following the cryptographic tradition, and highlighting our computer science method-
ology, our protocols are structured upon three pillars [24]:

1. Formal definitions play a central role. They specify the desirable properties
of our protocols. As we will see, these can often be quite tricky to develop.
One such example is what it means for a ledger to have safety, a topic we will
return to when we speak about ledgers.

2. Clearly articulated assumptions allow us to understand the limitations
of our protocols. Our protocols never work unconditionally, and we must
restrict our model to obtain security. One such example is the honest majority
assumption, a topic we will return to when we speak about proof-of-work.

3. Rigorous proofs of security give us the guarantee that our protocols are
secure, as long as our assumptions hold. Instead of employing handwavy
arguments, the proofs are mathematical theorems employing computational
reductions ane exact probability calculations. They assert that the protocols
are secure for all adversaries.

We will model the adversary as a Turing Machine interacting with the honest
parties, each of which will also be modelled as a Turing Machine. For the time being,
the Turing Machine formalism is unimportant: Intuitively, we will simply imagine
our adversary as a computer running an adversarial computer program which we
will denote A. Similarly, we will imagine the honest parties as separate computers
all running the same program, the honest program, which we will sometimes denote
Π. The adversary and the honest parties are all directly or indirectly connected
to each other in a common communication network. We will return to the formal
model of computation and the network at a later time to make our arguments
rigorous.

The critical part that will allow us to prove our security through computational
arguments is that we will limit the power of the adversary: We will require that the
adversary runs in polynomial time with respect to its input size. We will also allow
the adversary access to randomness. The same constraints are applied to the honest
parties. We will denote such parties PPT , probabilistic polynomial-time, parties.
Formally speaking, these are modelled as Turing Machines [34] with additional
access to a random tape. In practice, when thinking about these machines, we
simply think of them as regular computer programs (in, say, Python, C++ or
TypeScript) in which we have access to a random number generator, which we
assume produces fresh, uniform and completely fair randomness every time it is
called.

1.3 Game-Based Security
We will soon give detailed and rigorous definitions of what security properties we
want our protocols to achieve. These will be our design goals. Once we have clearly
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articulated these goals, we will attempt to formally prove that our protocols attain
the desired properties.

We want to rigorously define what security means. A first attempt, trying to
write out a definition in English, looks like this:

A protocol Π is secure if it is impossible for an adversary A to break it.

But what does it mean for the adversary A to break our protocol exactly? This
will depend on the exact protocol. When the time comes to talk about hashes,
signatures, or blockchains, we will define these rigorously. These security goals will
be written out in the form of a cryptographic game. These games are algorithms
that, given a particular PPT adversary, attest to whether the adversary has been
successful in breaking the protocol.

You can imagine the game as a piece of code that evaluates the success of an
adversary. The game will be specific to the protocol and property we wish to
describe, and be given a relevant name. The game is also known as the challenger
or experiment. To use one of the games, first, we decide which adversary we want to
evaluate, and fix the source code that defines this adversary. We call this adversary
A, denoting a particular computer program. We are only interested in evaluating

the performance of PPT adversaries against the game. We then run the game,
which is a different computer program, and give it the source code of the adversary
as a parameter. We also give the game access to run the honest protocol Π.
The game will simulate some interaction between the adversary and the honest
parties. The game executes the adversary and the honest parties and facilitates
some data exchange between them. It then takes the output of the adversary and
decides whether the adversary has been successful in her endeavour to break the
protocol. The game outputs a boolean output: true if the adversary was successful
in breaking the protocol, and false if the adversary was unsuccessful. It is bad for
us, the designers of the protocol, if there exists some adversary such that the game
outputs true. That’s why we call this a bad event The execution of the game never
occurs in real implementations of the protocol. It is simply a tool we use at the
mathematical level to argue about the security of our design.

In its foundations, our security is analyzed with a security parameter: The
parameter κ. This parameter denotes what probability of failure we are willing to
accept in our protocols: We can tolerate probabilities that are roughly 2−κ. For
κ = 256, this probability is extremely small: It is extremely more probable that a
global earth catastrophy is caused by an asteroid hitting it during the second you
read this particular sentence than a probability 2−256 occurring. Simply put, these
events never occur.

When calling the adversary and allowing her to perform an attack, we will hand
her some information, including the particular value κ that we are interested in.
The adversarial source code must be the same for all values of κ (we say that we
are interested in uniform adversaries).

The adversary and honest party run in polynomial time in the security parame-
ter κ. Similar to the analysis of algorithms in all of computer science, when we say
that the adversary A is polynomial, we mean that the adversary runs in polynomial
time with respect to its input length. More specifically, there exists a polynomial
p(κ) such that, given any input of size κ, the adversary runs for at most p(κ) steps.
If we want to give the adversary the option to run in polynomial time with respect
to the parameter κ, we must issue the call to the adversary with an input of size κ.
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We denote this by writing A(1κ), meaning that we call the adversary with an input
of a string consisting of just the character 1 repeated κ times. Because |1κ| = κ, the
length of the input is κ, and the adversary can run in p(κ) time. Note that it would
be inappropriate to call the adversary without arguments as A(), as in this case
the adversary has no time to perform the attack. It would also be inappropriate to
call the adversary using A(κ), as in this case the adversary would only have log κ
time available (since |κ| = log κ). We may have more information to pass to the
adversary as input, such as a public key. If that information already has length
κ, this is sufficient for our purposes, and we do not need to pass the adversary
the extra argument 1κ. You can think of the argument 1κ as giving the adversary
enough time to operate.

The format of a generic game is illustrated in Algorithm 1. The challenger is
parameterized by the code of the honest party Π and the code of the adversary A.
It is invoked with the security parameter κ (note that there is no restriction that
the challenger runs in polynomial time, as it is merely a mathematical tool). It
invokes the honest party, giving him polynomial time in κ to run, as well as some
additional arguments that will be defined by the particular protocol. It then runs
the adversary, giving her polymomial time in κ to run, as well as some additional
arguments which may depend on the honest party’s behavior. Depending on the
game, the challenger may invoke the honest party and adversary multiple times,
creating some interaction between them. Lastly, the challenger evaluates the out-
put of the adversary to ascertain whether she has been successful in breaking the
protocol, and outputs a boolean value: 0 indicating that the protocol remained
unbroken, or 1 indicating that the adversary broke the protocol. The challenger is
illustrated diagramatically in Figure 1.1.

Challenger / Game

honest
Π

adversary
A

result

true/false

1κ

interaction

Figure 1.1: A game-based security definition shown diagramatically. The chal-
lenger invokes both the honest party and the adversary before deciding whether
the adversary was successful.
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Algorithm 1 The form of a challenger for a game-based security definition.
1: function my-gameΠ,A(κ)
2: ▷ Invoke the honest party with poly κ time and more arguments
3: · · ·Π(1κ · · · )
4: ▷ Invoke the adversary with poly κ time and more arguments
5: result← A(1κ · · · )
6: ▷ Evaluate whether the adversary has been successful
7: if result indicates adversarial success then
8: return true
9: else

10: return false
11: end if
12: end function

Negligibility
In an ideal world, we would like to state that our protocols are unbreakable:

my-gameΠ,A(κ) = false

However, this goal is sadly unattainable. When the time comes to generate a
secret key or a password, we will make these have bit length κ. Unfortunately, the
adversary can guess such secrets by taking a random guess. If our secret is sampled
from the set {0, 1}κ, the set of κ-bit strings, the probability of the adversary guessing
correctly will be 2−κ. This is a probability of failure that we are willing to accept,
as it is unavoidable.

What happens if an adversary attempts to perform multiple guesses for the
secret key? Each of these guesses has a probability of success amounting to 1

2κ . Since
the adversary has polynomial time p(κ), the number of guesses she can perform must
be polynomial, too. What is the probability that at least one of these guesses is
correct? We can apply a union bound [30] to find this.

Theorem 1 (Union Bound). Consider n events X1, X2, · · · , Xn. Then the proba-
bility that any one of them occurs is given by their union bound:

Pr[X1 ∨X2 ∨ · · · ∨Xn] ≤ Pr[X1] + Pr[X2] + · · ·+ Pr[Xn]

Note that this is just an upper bound and these probabilities may not be exactly
equal. To see why, consider the simple example of rolling a die 6 times, hoping to get
a 6. For any one roll, the probability of getting a 6 is 1

6 , and the union bound tells us
that the probability of getting a 6 in any roll across our whole game of 6 rolls is at
most 1. However, the actual probability is in fact a little less: 1− (1− 1

6 )
6 = 0.665.

Here, we calculated the probability of not winning in a single roll, which is 1 − 1
6 .

We then calculated the probability of failing to win in any single roll, which is
(1 − 1

6 )
6. Lastly, we took the complement of this probability, interpreting this to

mean that we won in at least a single roll, obtaining 1− (1− 1
6 )

6. We will use this
style of arguments a lot when counting probabilities about blocks and chains.

Returning to our polynomial adversary, and applying a union bound, we see
that this adversary can succeed with probability bounded by p(κ)

2κ .
If we have one adversary who can succeed with some probability PrA, then

a different adversary A′ can succeed with probability bounded by p(κ)PrA for
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any polynomial p. This is known as amplification. We wish to define a class of
probability functions that we deem acceptable probabilities of failure. Clearly, if an
adversary has a constant probability of success (such as 0.5) that does not depend on
the security parameter κ, this is not acceptable, as we want κ to be our tuning knob
of how secure our protocol will be. We will deem acceptable the class of functions
denoting a probability which is not amplifiable to a constant by this manner.

Any inverse polynomial probability such as 1
κ3+κ+9 can be amplified by a poly-

nomial adversary to be close to the union bound by repeating the experiment a
polynomial number of times. Therefore, we must ask that our probability is smaller
than any inverse polynomial. Such functions are called negligible.

Definition 1 (Negligible function). A function f(κ) is negligible if for any poly-
nomial degree m ∈ N, there exists a κ0 such that for all κ > κ0:

f(κ) <
1

κm

We choose to accept negligible functions exactly because the probability of fail-
ure cannot be amplified in this manner. If an adverary A succeeds with negligible
probability, an adversary A′ that simulates A must run the simulation an exponen-
tial number of times in order to achieve anything beyond a negligible probability.
Given that we have constrained our adversaries to be polynomial-time, this is im-
possible.

The negligible probability of failure is the standard treatment in modern cryp-
tography [24]. Beyond the above argument pertaining to the polynomiality of ad-
versaries, negligible functions are easy to work with because they observe certain
closure properties. In particular, multiplying a negligible function with a polyno-
mial yields a negligible function. As constants are polynomials, scaling a negligible
function by a constant yields a negligible function too. Of course, multiplying
something negligible with something negligible keeps it negligible, and taking any
constant power of a negligible function keeps it negligible.

negl · negl = negl
const · negl = negl
poly · negl = negl

∀k ∈ N : neglk = negl

Definitions of Security
As designers, the ideal goal for us would be to design a protocol for which no
adversary succeeds in breaking the game, no matter what code she is running. If
we can achieve this, it will be a truly magnificent achievement. Observe what we
are trying to say here: The protocol works no matter what the adversary decides
to do, as long as our assumptions are respected (such as the polynomiality bounds
on the adversary). We are not merely enumerating a bunch of attacks that we
considered ourselves and arguing that our protocol is secure against these! Instead,
we are arguing against all adversaries, even adversaries that we do not know about
and have not imagined. The ability to argue against all adversaries is the epitome
of modern cryptography, a feat only possible through the formalism and models of
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computer science. This proof style is recent and has only appeared within the last
50 years.

The ideal protocol Π satisfies security against all adversaries:

∀PPTA : GameΠ,A(κ) = 0

However, this is an unattainable goal. To see this, consider the case where the
honest party generates a secret of length κ such as a private key or password. In
that case the adversary can simply attempt to guess this private key at random.
This will be possible with probability 1

2κ . As such, the above goal of requiring that
the game always outputs 0 for all adversaries cannot be attained. Instead, we will
require that any adversary only has negligible probability of succeeding in breaking
these games. Remember that the probability of randomly finding the secret key is
1
2κ and this is a negligible value in κ.

A security definition will look like this:

Definition 2 (Security). A protocol Π is secure with respect to game Game if there
exists a negligible function negl(κ) such that

∀PPTA : Pr[GameΠ,A(κ) = 1] ≤ negl(κ)

We are using probability notation here because the execution of the challenger
with the same honest protocol Π and against the same adversary A and using a fixed
security parameter κ will not always yield the same result! Since both the honest
party and the adversary have access to generate randomness, the challenger will
sometimes report 0, and other times report 1. For a fixed Π and A and κ, there
is a certain probability that the challenger will report 0, and a certain probability
that the challenger will report 1.

Fixing Π and A, but leaving κ to take any value, we obtain different probabilities
for each value of κ. Therefore, the value denoted by Pr[GameΠ,A(κ) = 0] for a fixed
Π and A is a function of κ. What we are saying here is that this function that
counts the probability must be below some negligible function. Said differently,
that probability must eventually (for sufficiently large κ) become smaller than all
inverse polynomials.

The Honest/Adversarial Gap
Note here how great the requirements of security that cryptography mandates are:
In a secure protocol, the honest party can act within polynomial time, but an ad-
versary needs superpolynomial time to break it. The successful honest party is
efficient and lives within the complexity class P, but the successful adversary is in-
efficient, and lives within the complexity class NP but not in P. This is illustrated
in Figure 1.2. This is a much bolder claim that the security of traditional money!
In a traditional banknote monetary system, the honest party (such as the govern-
ment) has many more resources than the adversary (say, a forgery criminal). If
the adversary acquires resources equivalent to the honest party (for example access
to the same banknote-printing machines), the system’s security will be compro-
mised. Here, we are achieving something significantly stronger: An honest party
needs only polynomial time to successfully participate in the protocol, but a suc-
cessful adversary will require superpolynomial time to successfully break it — a
huge discrepancy.
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Figure 1.2: In a secure protocol, a successful honest party needs polynomial time,
while a successful adversary needs superpolynomial time.

Proofs of Security
When the time comes to prove a protocol secure, we will sometimes make an as-
sumption that an existing, underlying protocol is secure. Our new protocol will be
built on top of the existing protocol. In the blockchain world, we will take many
underlying primitives for granted: We will make use of hash functions and signa-
tures assuming they are secure, and leave their design to the cryptographers. Our
theorems will state that if the underlying protocol is secure, then the protocol we
are building on top of the existing primitive is also secure. Said differently, if no
PPT adversary wins in the underlying protocol except with negligible probability,
then also no PPT adversary can win in our new protocol, except with negligible
probability.

The proofs of these theorems will take the form of a computational reduction,
and they will look roughly as follows, when we are designing a new protocol Π∗:
Claim. If protocol Π∗ is secure, then protocol Π, built on top of Π∗, is also secure.
Proof. Suppose, towards a contradiction, that protocol Π is insecure. Then, by
the game-based security definition, there must exist a PPT adversary A that breaks
Π with non-negligible probability (but we don’t know the exact inner workings of
this adversary, because she is arbitrary). We design a PPT adversary A∗, for which
we write the code and know her inner workings exactly. Somewhere in the code of
A∗ we make use of the code of A as a black box. The adversary A∗ attempts to
break the protocol Π∗ within the confines of the challenger for the protocol Π∗ (a
particular game). The adversary A attempts to break the protocol Π within the
confines of the challenger for the protocol Π (a different game). When A∗ runs,
she simulates the execution of A by invoking her code, as illustrated in Figure 1.3.
When A∗ invokes A, she must do so behaving as if she were the challenger for
protocol Π. The adversary A∗ can invoke A multiple times with different inputs
and collect her outputs before producing an output of her own. Because A runs in
polynomial time, and because A∗ only performs a polynomial number of operations
beyond invoking A a polynomial number of times, therefore A∗ is also a PPT. We
can now evaluate the probability of success of A∗ and relate it to the probability of
success of A, arguing that if the probability of success of A is non-negligible, then
so is the probability of success of A∗. However, this contradicts the assumption
that Π∗ was secure, completing the proof. ♢
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Figure 1.3: A computational reduction between two adversaries. Given an adver-
sary A against protocol Π, we construct an adversary A∗ against a protocol Π∗.

This proof style is by contradiction. We can write the same proof in a forward
direction without resorting to a contradiction. This gives a shorter proof, and we
will prefer this style in our writing, following the example of Katz and Lindell [24].
These proofs look like this:
Proof. Consider an arbitrary PPT adversary A attempting to break the protocol
Π. We construct an adversary A∗ against the protocol Π∗ by making use of A as
before. For the same reasons as before, A∗ is also PPT, and their probabilities of
success are related. By the security assumption on Π∗, we know that the probability
of success of A∗ against its challenger is negligible. From the relationship between
the probabilities of success of A and A∗, we also deduce that the probability of
success of A is negligible, completing the proof. ♢

The two proofs are identical, with the exception that the second one is a little
more straightforward. Of course, these are rough proof outlines provided to give
a sketch of what to expect next, but are still quite abstract. You will become
acquainted with the particular workings of this style of proof as we work through
particular theorems, particular protocols, and particular games in the next chapters.

1.4 The Network
In our quest to decentralize money, our participants will be nodes on a computer
network. These nodes will each run their software and communicate with one
another. Each of them is connected to some of their peers as illustrated in Figure 1.4.
Contrary to more traditional Internet systems where there is a designated role of a
client and a server, here all peers play the same role: They function both as clients
and as servers of requests.

The Non-Eclipsing Assumption
In this network, not everyone is connected to everyone else, but messages can reach
from one side of the network to the other by travelling through intermediaries.
This is achieved through the gossiping protocol: When a node receives a message it
hasn’t seen before, it forwards it to its peers. That way, everyone eventually learns
about the message. In order to avoid denial-of-service attacks, messages may be
validated in a basic manner before they are gossiped. For example, syntactically
invalid messages will not be gossiped.
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Figure 1.4: The peer-to-peer network. Nodes are shown as circles and connections
as lines. The honest nodes are shown in blue, while the adversarial nodes are shown
in black.

We will make a central assumption about the network: That there exists a
path between any two honest parties on the network, which consists of only honest
nodes. Said differently, the network is not split into components whose connection
is controlled by the adversary.

Definition 3 (Non-eclipsing). The non-eclipsing assumption states that, between
every two honest parties on the network, there exists a path consisting only of honest
nodes.

Note that, for the non-eclipsing assumption to hold, it is not sufficient that every
honest party has a connection to an honest party. There might be components of
honest parties that remain isolated from the rest of the network, as illustrated in
Figure 1.5.

Figure 1.5: An eclipsed peer-to-peer network. Even though every honest party has
an honest connection, the network is partitioned into two disconnected components
by the adversary.

We are introducing this assumption out of necessity. We cannot hope to build
any currency in an eclipsed world. To see why, imagine two completely isolated
civilizations, both maintaining their own separate currency. These civilizations,
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given a lack of communication between them, cannot hope to be able to deduce
who owns how much money in their respective counterpart world.

The Sybil Attack

Figure 1.6: A Sybil attacked peer-to-peer network. The non-eclipsing assumption
is not violated.

Following our pattern of a powerful adversary, we give the adversary the abil-
ity to create as many identities on the network as she desires. This is termed a
Sybil attack [12]. The adversary may overwhelm an honest party with adversarial
connections as illustrated in Figure 1.6.

Definition 4 (Sybil Attack). In a Sybil attackable network model, the adversary
may create as many identities (nodes) as she desires. The honest parties cannot
distinguish which identities have been created by the adversary in this manner.

It is possible that the adversary controls all the connections of an honest party,
except for one connection to an honest party, which is necessary to maintain the
non-eclipsing assumption. Every honest party will certainly be connected to at least
one other honest party.

Peer Discovery
Ensuring that the non-eclipsing assumption is maintained is a practical engineering
problem and there are many heuristics employed in achieving this. The process of
connecting to other nodes, attempting to ensure at least one honest connection, is
termed peer discovery.

Let us briefly discuss how peer discovery is performed in practical peer-to-peer
networks. When a peer-to-peer node is first booted, it must connect to some of its
peers for the first time. This is the network bootstrapping phase. At this phase,
the node typically will attempt to connect to a list of hard-coded peers whose IP
addresses appear in the implementation source code. Some of these connections may
fail, but if one of them succeeds and connects to an honest party, the newly booted
node can begin to operate. After bootstrapping, whenever the newly booted node
connects to a peer, it asks the connected peer to tell it about the addresses of its
own peers. These peers are then recorded and can be used for further connections.
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They can also be reported to other peers asking for peer discovery. The policy
for reporting discovered peers may vary. For example, some nodes may not share
all of their known peers. In case the bootstrapping phase fails, the user is given
the option to manually connect to a peer by entering its address. This allows the
software to survive cases of censorship, or of broad compromise of all the hard-coded
peer addresses.

Problems
1.1 Which of the following functions are negligible in κ?

a. f(κ) = 0

b. f(κ) = 1

c. f(κ) = 2−128

d. f(κ) = 2κ

128

e. f(κ) = 128
2κ

f. f(κ) = 1
3κ3+7κ2+12

g. f(κ) = κ7

7κ

h. f(κ) = 1
log κ

i. f(κ) = 1
κ!

1.2 Use induction to prove the Union Bound theorem.

1.3 Let f and g be negligible functions. Show that h(κ) = max{f(κ), g(κ)} is
negligible.

1.4 Prove that

a. negl · negl = negl
b. const · negl = negl
c. poly · negl = negl
d. ∀m ∈ N : neglm = negl

Further Reading
Blockchain science is founded on cryptography. For a great introduction to mod-
ern cryptography, consult Introduction to Modern Cryptography by Katz and Lin-
dell [24]. It is a beautifully written book. It explores how to build many of the
primitives we will make use throughout this book, including hash functions and
signature schemes. More importantly, it is a good way to learn about the adver-
sarial mindset and to look into complexity reduction-based security proofs. The
book is filled with theorems and proofs that show that, for all PPT adversaries,
the protocol is secure, except with negligible probability. In Further Reading para-
graphs at the end of the next chapters, you will find some references in chapters of
Modern Cryptography (2nd edition). Another good book on cryptography is Foun-
dations of Cryptography [16,17]. An easier and pleasant to read textbook is Smart’s
Cryptography Made Simple [33].
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For a more in-depth treatment of Turing Machines and our computational
model, consult Sipser’s Introduction to the Theory of Computation [32]. It is a
very well written book, with great examples and proofs that are written to be ed-
ucational. It’s an easier book than Modern Cryptography, and a good way to learn
computational reductions.

Throughout this book, we use many elements of discrete mathematics and prob-
ability theory. For discrete mathematics, you can use Liu’s Elements of Discrete
Mathematics [25]. For probability theory, you can use Ross’s A First Course on
Probability Theory [30]. You can read both cover-to-cover, but they also function
well as a reference in case you want to look something up.
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Chapter 2

Cryptographic Primitives

2.1 Hash Functions
We already discussed the gossip protocol that allows peer-to-peer nodes to exchange
objects on the network. Before exchanging an object, it is useful that the nodes can
talk about these objects and ask each other whether they have a particular object.
To do this, it will be useful to give each object a unique identifier. We cannot use
increasing integers as identifiers, as these objects may be created in different parts
of the network and there is no global shared counter. We also cannot use a simple
random number as the identifier, as we want the identifier to be unfakeable: Given
an identifier we want to be able to check that the object really does correspond to
the identifier.

For this, we will use cryptographically secure hash functions. The hash function
is a function H : {0, 1}∗ −→ {0, 1}κ, where κ is the security parameter. As you
can see, the hash function accepts any string as input, but always returns a κ bits
long string. This makes it useful as a compression mechanism, as these identifiers
are short (κ will be 256 bits in practice) and can be exchanged on the network prior
to the actual objects. In order for H to be practically useful, we require that it is
polynomially computable.

Collision Resistance
Ideally, we would like each different object to correspond to exactly one hash output:

∀x1, x2 : x1 ̸= x2 ⇒ H(x1) ̸= H(x1)

However, this ideal goal is unattainable. Because the hash function has unlimited
inputs and limited outputs, there will necessarily exist some collision in which
multiple inputs correspond to the same output. To find a collision, we can start
enumerating all the possible inputs to the hash function starting at 0 and going up
to 2κ. If we have not found a collision when we reach 2κ − 1, then this means that
we have taken up all of the possible 2κ outputs. When we then evaluate the hash
function on the input 2κ, we will certainly find a collision. This process is shown
in Algorithm 2.
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Algorithm 2 An exponential search for a collision in a hash function that certainly
finds a collision.

1: function collision-searchH(κ)
2: for i← 0 to 2κ do
3: for j ← i+ 1 to 2κ do
4: if H(i) = H(j) then
5: return (i, j)
6: end if
7: end for
8: end for
9: end function

Of course, as this function has to run through 22κ combinations, its running
time is exponential. The result that hash functions must necessarily have collisions
stems from the Pigeonhole Principle [25]:

Theorem 2 (Pigeonhole). Consider a function f : A −→ B. If |A| > |B|, then
there must exist x1 and x2 such that f(x1) = f(x2).

Instead, we will require that finding such collisions is computationally difficult.
We can define this in the form of the collision finding cryptographic game, illustrated
in Algorithm 3.

Algorithm 3 The collision-finding game for a hash function H.
1: function collision-gameH,A(κ)
2: x1, x2 ← A(1κ)
3: return Hκ(x1) = Hκ(x2) ∧ x1 ̸= x2

4: end function

In this game, we ask the adversary to produce two different inputs x1 and x2

that have the same hash. Note that the hash function H is different for every value
of κ (while the code that produces the hash output for every κ is the same, it must
take κ into account when running), so we denote it Hκ. It gives κ bits of output.
The adversary can have some hard-coded collisions in her source code, but, if our
hash function is secure, these won’t work1 for sufficiently large values of κ. The
security definition follows from this game:

Definition 5 (Collision Resistance). A hash function H : {0, 1}∗ −→ {0, 1}κ is
collision resistant if for all PPT adversaries A

Pr[collision-gameH,A(κ) = 1] ≤ negl(κ)

Gossiping with Hashes
Collision resistance ensures that, if we are given a hash of something, we cannot
later be given something else that hashes to the same value. Each object’s hash
is uniquely identified by its content. We say that objects are content addressable

1If you come from the field of cryptography, note that here we’re bypassing the gory details of
keyed hash functions by requiring the adversary be uniform.
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Figure 2.1: Gossiping via hashing. The hash function H is used to give content-
addressible hash h to object O.

by their hashes. This makes hashes suitable for use as identifiers of objects as we
exchange them on the network. When gossiping about objects, instead of sending
a whole object to each of our peers, we can optimize the process by advertising the
ownership of an object through its hash. The hash of an object used in this manner
is called the objectid. If the peer already knows about this object, they can ignore
our advertisement. If the peer has not seen the object before, they can request the
object through its objectid. Only at this point, we send the full object to the peer.
Upon receiving the object, the peer can verify that it is indeed the requested object
by hashing it and comparing it to the stored objectid. Towards this purpose, each
node must maintain a set of known objectids for quick lookup.

We now have a more complete understanding of how the gossiping protocol
works, illustrated in Figure 2.1:

1. Node A first becomes aware of a new object O, either by receiving it from a
peer, or by generating it locally. Object O has objectid h = H(O), where the
input to the hash function is a string-encoded version of the object.

2. A advertises its knowledge of O by sending a message indicating I have an
object with objectid h to its peer B.

3. B receives the objectid h and checks against its database whether it has
already seen this object. Suppose that it has not. At this point, B sends to
A a message requesting the contents of the object with objectid h.

4. A sends to B the object O. Upon receiving O, the node B can verify that
h = H(O), where h is the requested objectid. This ensures that A sent the
correct object to B.

5. In turn, B advertises to its peers that it now knows of an object with objectid
h. It sends node C a message indicating this.

6. At this point, if C has already received O from A, it will not request the
object from B. This is how the propagation in the gossiping algorithm stops.

The node B does not know whether h was newly generated by A, or if A is simply
relaying. This gives a modicum of anonymity: When a new object is first sent to
us from an IP address, we cannot deduce that the message is actually originating
from that IP address.
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Algorithm 5 The preimage-finding game for a hash function H.
1: function preimage-gameH,A(κ)
2: x

$← {0, 1}κ
3: y ← Hκ(x)
4: x′ ← A(y)
5: return Hκ(x

′) = y
6: end function

Preimage resistance
Hashes are also useful for allowing a party to commit to a value. The party reveals
that hash, but not the object itself. Anyone who has the hash can verify that the
object is correct once the full object has been received, but it is useful that this is
not possible when seeing only the hash: It should be difficult to find the preimage
of a hash given its image. Of course, the preimage of a hash can be found by
performing an exhaustive search as illustrated in Algorithm 4, but this will take
exponential time.

Algorithm 4 An exponential search for a preimage in a hash function that certainly
finds the preimage.

1: function preimage-searchH(h)
2: ctr← 0
3: while true do
4: if H(ctr) = h then
5: return ctr
6: end if
7: ctr← ctr + 1
8: end while
9: end function

Naturally, we can define the property of preimage resistance using a crypto-
graphic game.

In this game, the challenger chooses a random κ-bit value as the input. This is
denoted by the x

$← S symbol that indicates that an element x is chosen uniformly
at random from the set S. Note here that to do this, the challenger, too, has
access to randomness, and so any probabilities are also taken with respect to this
randomness. The adversary is given H(x) and would like to find x. As there are
other inputs that produce the same H(x), we ask her to produce some x′ (equal or
different from x) that has the same hash value as x. Preimage resistance is then
defined as follows:

Definition 6 (Preimage Resistance). A hash function H : {0, 1}∗ −→ {0, 1}κ is
preimage resistant if for all PPT adversaries A

Pr[preimage-gameH,A(κ) = 1] ≤ negl(κ)
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Algorithm 6 The second-preimage-finding game for a hash function H.
1: function 2nd− preimage− gameA,H(κ):
2: x1

$← {0, 1}2κ+1

3: x2 ← A(x1)
4: return x1 ̸= x2 ∧Hκ(x1) = Hκ(x2)
5: end function

But, perhaps, we are simply asking too much of this adversary. It would already
be a big problem for us if the adversary, given some x1, can find a different x2 that
hashes to the same value. We call this property second primage resistance, and it
is defined through the following game.

In this game, the adversary is given a randomly sampled (2κ + 1)-bit string
input x1 by the challenger. The adversary is successful if she can come up with an
x2 ̸= x1 that hashes to the same value as x1, as illustrated in Algorithm 6. Second
preimage resistance is then defined as follows:

Definition 7 (Second Preimage Resistance). A hash function H : {0, 1}∗ −→
{0, 1}κ is second preimage resistant if for all PPT adversaries A

Pr[2nd-preimage-gameH,A(κ) = 1] ≤ negl(κ)

It seems that all three properties, collision resistance, preimage resistance, and
second preimage resistance, are desirable. Let us examine whether some of these
properties are stronger than the other. Finding a collision seems to be the easiest:
The adversary is asked to come up with her own x1, x2, without any input from the
challenger. The preimage adversaries seem stronger: If we have an adversary who
can produce a preimage, we can use her to create a collision. We now show that
collision resistance implies 2nd preimage resistance.

Theorem 3 (Collision Resistance =⇒ 2nd Preimage Resistance). If a hash func-
tion H is collision resistant, then it is 2nd preimage resistant.

Proof. Suppose, towards a contradiction, that H is not 2nd preimage resistant.
Then, there exists an adversary A that can win the 2nd preimage game with non-
negligible probability. We will construct an adversary A′ against the collision chal-
lenger which uses A as a black box.

The adversary A′ works as illustrated in Algorithm 7 and Figure 2.2. She first
chooses an x1 uniformly at random from the message space. She then hands this
x1 to A, who, hopefully, produces an x2 such that x1 ̸= x2 and H(x1) = H(x2).
The adversary A′ outputs the pair (x1, x2).
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Algorithm 7 The adversary A′ in the proof of Theorem 3.
1: function A′(1κ):
2: x1

$← {0, 1}2κ+1

3: x2 ← A(x1)
4: return (x1, x2)
5: end function

A’ A

2PRE

COLL

x2

x1

(x1, x2)

x1 ← {0, 1}2κ + 1$

Figure 2.2: A visualization of Theorem 3.

If the adversary A is successful in breaking the 2nd preimage game, then A′ will
be successful in breaking the collision game:

Pr[2nd-preimage-gameH,A(κ)] = Pr[collision-gameH,A′(κ)]

Since Pr[2nd-preimage-gameA(κ)] is non-negligible, then so is Pr[collision-gameA′(κ)].
Furthermore, the adversary A′ works in polynomial time, and so is also PPT.

This contradicts the assumption that H is collision resistant.

In addition, an adversary who breaks preimage resistant is stronger than an
adversary who breaks 2nd preimage resistant. This is not surprising. An adversary
who works towards finding a second preimage already has a first preimage, whereas
an adversary who attempts to break preimage resistance only has an image.

This is captured in the following theorem:

Theorem 4 (2nd Preimage Resistance =⇒ Preimage Resistance). If a hash
function H is 2nd preimage resistant, then it is preimage resistant.

Proof. Consider a PPT adversary A against the preimage game. We will construct
an adversary A′ against the 2nd preimage game. The adversary A′ is depicted in
Algorithm 8 and Figure 2.4. It is clear that A′ is PPT because A is PPT.

Algorithm 8 The 2nd preimage adversary A′ of Theorem 4.
1: function A′(x1):
2: y ← H(x1)
3: x2 ← A(y)
4: return x2

5: end function
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Figure 2.3: The reduction in the proof of Theorem 4.

Even though A could win the preimage game, this only guarantees that H(x1) =
H(x2). We need one additional property for A′ to win the 2nd preimage game: It
must hold that x1 ̸= x2. We will now argue that this is often the case.

To do this, we draw the input space as a big box with each input illustrated as
a pink dot, as shown in Figure 2.4. There are 22κ+1 dots in the big box. We now
partition this big box into smaller boxes, grouping each input with the other inputs
that have the same image. We move the larger boxes (containing more dots) to the
left of the picture and the smaller boxes (containing fewer dots) to the right of the
picture.

22κ+1dots

22κ dots 22κ dots

Figure 2.4: A visualization of the counting argument in Theorem 4.

We now split the big box into two big partitions exactly in the middle, as
illustrated by the vertical dashed line, with 22κ dots on the left, and 22κ dots on
the right (the dashed line may cut one of the smaller boxes in the middle, but this
is fine).

We now argue that the boxes on the left of the dashed line are large.
Claim: Each of the boxes to the left of, or on, the dashed line contains at

least 2κ dots. To see this, we need a counting argument. Towards a contradiction,
suppose that one of the boxes to the left of, or on, the dashed line contains fewer
than 2κ dots. Then, since the boxes are ordered, each box on the right of the dashed
line contains fewer than 2κ dots. However, because the output space is only 2κ,
this means that there are at most 2κ boxes to the right of the dashed line. This
means that, on the right of the dashed line, there can only be fewer than 2κ dots
×2κ boxes = 22κ dots. But there are exactly 22κ dots to the right of the dashed
line by construction. Therefore the claim is true.

Now that we have proven this claim, we can compare the probabilities of success
of A and A′. We will only consider the case where the uniform sampling of x1 by
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the 2nd preimage challenger falls to the left of the dashed line. This happens with
probability 1

2 . If this is the case, then there are at least 2κ dots in the box of H(x1).
Therefore, conditioned on the fact that A is successful and that we have landed

to the left of the dashed line, the probability of success of A′ is 1−2−κ. The overall
probability of success of A′ is

Pr[2nd-preimage-gameA′(κ) ≥
1

2
(1− 2−κ) Pr[preimage-gameA(κ)] .

Since H is 2nd preimage resistant, the probability Pr[2nd-preimage-gameA′(κ)] is
negligible. Then so is Pr[preimage-gameA(κ)], because 1

2 is a constant and (1−2−κ)
is a value larger than 1

2 . Therefore, H is also preimage resistant.

Note that in the above proof, the probabilities of success of A′ and A are related
by an inequality. This is because A′ may also succeed in case we land to the right
of the dashed line, but we are not accounting for this probability in our counting.

Additionally, observe how we went in the forward direction in this proof: Con-
trary to previous proofs, we did not assume that A succeeds with non-negligible
probability at any point in the proof. As we have discussed in the previous chapter,
this is a cleaner way of writing security proofs, although it takes some getting used
to.

Hash Security
We can now define what it means for a hash function to be cryptographically secure
or simply secure. Since collision adversaries are the weakest adversaries, we will
simply require that our hash functions are collision resistant.

Definition 8 (Secure Hash Function). A hash function H : {0, 1}∗ −→ {0, 1}κ is
secure if there is a negligible function negl such that

∀PPTA : Pr[collision-gameH,A(κ)] = 1] ≤ negl

Applied Hashes
In practice, the hash functions most commonly used to build blockchains are SHA256
(used by Bitcoin), SHA3 or keccak (used by Ethereum), blake2, or Poseidon. As an
example, SHA256 is a hash function that takes any input and outputs κ = 256 bits
(or 32 bytes). Here is the SHA256 hash of the word “hello”, displayed in hexadecimal
format:

2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

2.2 Signatures
When Alice sends money to Bob, she needs to authorize this payment. This means
that the rest of the network needs Bob to prove that Alice really gave him her
money instead of taking his word for it.

We will use a cryptographic signature scheme to do that. A cryptographic
signature scheme is a means for a party to say “this message was really written by
me” and it is not a forgery.
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Public Key Cryptography
Before we discuss signature schemes, we must discuss the notion of identity in the
cryptographic setting. In a traditional legal system, an identity is tied to a person’s
physical body and authorized by a government using papers such as a passport. In
our case, we do not want to rely on physical bodies or centralized governments for
proving identity. Anyone should be able to create a new identity pseudonymously,
without necessarily associating it with their real person. To do this, a participant
uses his computer to create a key pair. The key pair consists of two keys: A public
key and a secret key (or private key). The public key portion of the key pair can
be shared freely and even be made public. For example, it can be published on the
owner’s website, social media, or on a newspaper, without any security problems.
On the contrary, a private key must be kept secret. We use the public key to specify
the identity about which we are speaking. So, instead of saying “Alice” with such
and such legal name, we refer to her by her public key. The private key can be
used by Alice herself to prove her identity. That’s why the private key must remain
secret: If it falls into the hand of someone else, this someone else really is Alice.
Of course, any physical person can create multiple different key pairs and maintain
multiple identities that are not necessarily associated with one another. This idea
will play an important role in achieving a basic level of pseudonymity.

The public key and private key are created together as a pair, because they are
associated with one another mathematically in a unique manner. For every private
key, there is a unique associated public key. For every public key, there is a unique
associated private key. Given a private key, it is easy to get the respective public
key. Given a public key, it is hard to get the respective private key, even though
there is a unique such key. This is essential. If it were easy to get the private key
from a public key, anyone who knew your public key could impersonate you. We
will denote the public key pk and the secret (or private) key sk.

Unforgeability
A cryptographic signature is created using a particular private key sk and is denoted
σ. It is associated with a particular message m. This means that the person

who holds the private key has authorized this message m. The message will say
something like: “I, Alice, gave 5 monetary units to Bob.” Of course, the messages
will be in a computer-readable format. We will make these messages more precise
very soon.

A signature is associated with a particular message. If the user wants to sign a
different message, a different signature must be created. If σ is the signature per-
taining to the message m, then a signature σ′ must be created for a different message
m′ ̸= m. The signature σ will be invalid for message m′. This shows that crypto-
graphic signatures are very different from hand-written signatures. Hand-written
signatures are useless from a security point of view, as they can be copied and pasted
around and their veracity cannot be checked. Cryptographic signatures cannot be
copied underneath unauthorized messages. This would constitute a forgery, and we
will make a precise computer science claim about how likely such forgeries are using
a cryptographic game. We emphasize that we use the word signature because there
is some analogy in physical signatures, but what we are achieving here is something
truly different and much more powerful than pen-and-paper signatures. There is
no reliance on courts of law and pseudoscientific “graphologists” to tell whether a
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signature is genuine. Instead, the reliance is on hard computational problems and
formal cryptographic claims.

Before we define our security game, let us precisely state how a signature pro-
tocol works. Initially, Alice generates her key pair (pk, sk) by invoking a special
algorithm Gen(1κ). The public key and the secret key are both simple strings, κ
bits long (in practice typically 256 bits each). She keeps sk secret and publishes
pk by sending it to her friends. When the time comes for Alice to write a mes-
sage m that she wishes to sign, she uses her private key sk to invoke the function
Sig(sk,m) to obtain a signature σ. She sends the message m together with the

signature σ to Bob. Bob already holds the public key pk of Alice. He uses the
public key to invoke the function Ver(pk,m, σ), which returns true if the signature
was genuinely created by Alice, or false otherwise. If the adversary sends a different
message m′ ̸= m together with this σ to Bob, the Ver function will return false.

If both the sender and the verifier are honest, the signature scheme should always
work. This is what constitutes a correct signature scheme.

Definition 9 (Signature Correctness). Consider a signature scheme (Gen, Sig,Ver).
The scheme is correct if for any key pair (pk, sk) generated by invoking Gen, and
for all messages m, it holds that Ver(pk,m, Sig(sk,m)) = true.

For the security definition, we want the adversary to not be able to produce
messages that were not authorized by their rightful owner. Since we are protecting
an honest verifier who holds a correctly generated public key, our challenger will
invoke Gen to obtain the key pair (pk, sk). Additionally, the adversary will be given
access to pk, since this is public, but not access to sk (if the adversary has access to
sk, we can have no hope). The adversary will then attempt to generate a signature
σ that verifies for a message m using the public key pk. The adversary does not
have to use the Sig algorithm, but can use any method she likes, as long as the
Ver algorithm returns true. The game will output true if the Ver algorithm outputs
true.

But note that this approach misses something: The adversary is trying to gen-
erate signatures in the blind, but in the real world, the adversary may see some
authorized signatures that the honest signer really did make. The adversary can
then make use of these signatures as she sees fit. For example, she might try to
copy/paste a signature on a different message, or alter an existing signature on one
message to create a signature on a different message. We would like our game to
capture the fact that the adversary has this kind of access. To make her even more
powerful, in our game we allow the adversary to ask the signer to sign any message
of her choice. As long as the adversary can produce a signature for any message
she did not ask a signature for, we consider it a successful forgery. This is a very
powerful notion. The adversary has a lot of power, so if we can create a signature
scheme that is resilient to such adversaries, we will have a lot of confidence in our
protocol.
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Algorithm 9 The existential forgery game for a signature scheme (Gen, Sig, V er).
1: function existential-forgery-gameGen,Sig,V er,A(κ)
2: (pk, sk)← Gen(1κ)
3: M ← ∅
4: function O(m)
5: M ←M ∪ {m}
6: return Sig(sk,m)
7: end function
8: m,σ ← AO(pk)
9: return Ver(pk, σ,m) ∧m ̸∈M

10: end function

The existential forgery game is depicted in Algorithm 9. Initially, the challenger
generates a keypair (pk, sk) using the honest key generation algorithm Gen. He
then invokes the adversary, giving her access to pk. Since pk is κ bits long, we do
not need to pass 1κ to this adversary. A closure function O is defined within the
challenger. When invoked with a message m, this function gives out a signature σ
to the message m using the secret key sk, but without revealing the secret key. The
closure also records the requested message in the set M . When the adversary is
invoked, she is given oracle access to call the function O. This is like a callback, and
is denoted using the exponent notation. It means that A can call O, but cannot look
at its code. Critically, A cannot see the value sk. The adversary can make multiple
queries to the oracle to obtain many signatures. Based on the signatures she sees,
she can make yet further queries in an adaptive manner. When she is finally ready,
the adversary is expected to produce a signature σ on a message m that was not
queried to the oracle O (the adversary can trivially succeed in providing a signature
for messages queried to the oracle). If the message and signature provided by the
adversary pass the Ver check using the public key pk, the adversary is deemed
successful.

The security definition is straightforward. Since we have already seen a few
identical security definitions, try writing out the definition before looking at it.

Definition 10 (Secure Signature Schemes). A signature scheme (Gen, Sig,Ver) is
called secure if there exists a negligible function negl such that

∀PPTA : Pr[existential-forgeryGen,Sig,Ver,A(κ) = 1] < negl(κ)

Secure signature schemes are sometimes called existentially unforgeable signature
schemes.

Applied Signatures
Since the hash of a message is a unique identifier for it, it is sufficient that the hash
of a message is signed instead of the message itself. This is often done in practice
since it simplifies the implementation of signature schemes (libraries that implement
signatures will do this for you). One class of secure signature schemes is called ECDSA
and is based on the mathematical structure of elliptic curves. These curves define
how public keys are structured, and they involve some algebra which makes it hard
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for private keys to be calculated based on the knowledge of just the public key. The
computational problem on which hardness is based is called the discrete logarithm
problem. There are different curves with different names, and each of them defines
a different format for key pairs. A popular curve in cryptocurrencies is secp256k1.
Another is ed25519.

Here is a public key of the ed25519 signature scheme:

10b4b0f158afb93e3fd6111b564ad4c4054ae9a142362d8d9e05a9f2d6444530

Here is the respective private key:

7aa064fb575c861d5af00febf08c1c31620d5a70094c4bcb11cb2720630ee98a

Here is a signature generated with the above private key:

c538752e628c9ca43b3328f68afc76af40cf68732db00a8c9a885a6d41045b49
5ef44fb625a6742895d6819a63c254e352537998961a6802687140115811a409

As you can see, all of these look pretty much like random bytes. As blockchain
protocol designers, the details of these curves and the exact underlying meaning of
private keys and public keys do not matter to us, as long as the resulting signature
scheme is secure. When implementing a cryptocurrency, it is best to use a library to
do the signing and verification for us instead of implementing the signature scheme
ourselves. Like many cryptographic primitives, it is extremely difficult to write a
good, safe implementation for signature schemes. There are many pitfalls such as
bad randomness and timing attacks. Do not roll your own crypto.

We will use signature schemes for basic money transfer. When Alice wishes to
participate in the cryptocurrency, she will initially create an identity (pk, sk) by
invoking Gen. When she is ready to get paid, she will hand out pk to the person
wishing to pay her. Later, when the time comes for her to spend her money, she
will authorize a payment by invoking the function Sig using her private key sk. The
message describing the payment must contain both the amount that she is spending
as well as the public key pk′ of the receiver. Both of these must be included in m so
that nobody can forge the amount that Alice paid or the identity of the receiver and
swap it out for something else. Lastly, Alice’s payment can be verified by invoking
Ver using pk on m and the signature.

Problems
2.1 What is an example of a hash function that is not collision resistant, nor preim-

age resistant, nor 2nd preimage resistant?

2.2 The proof of Theorem 4 is a proof with reference to the illustration. Make it
rigorous so that it doesn’t speak of images, boxes, and dashed lines. Instead,
use exact counting formulas and define appropriate notation to represent the
boxes as equivalence classes.

2.3 In the proof of Theorem 4, the probabilities

Pr[2nd-preimage-gameA′(κ)] ≥
1

2
(1− 2−κ) Pr[preimage-gameA(κ)]

are compared by ≤. Why are they not exactly equal?
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2.4 Give a simpler proof of Theorem 4.

2.5 Combine Theorems 3 and 4 to directly show that collision resistance implies
preimage resistance.

2.6 Given a collision resistant hash function H, construct a preimage and 2nd
preimage resistant hash function G which is not collision resistant. Prove these
properties of G.

2.7 Given a collision resistant hash function H, make a collision resistant hash
function G whose first bit is reliably predictable and prove that it is collision
resistant. Prove these properties of G.

2.8 Construct a correct but insecure signature scheme.

2.9 Let H : {0, 1}∗ → {0, 1}κ be a collision-resistant hash function and define
G(x) = H(H(x)). Show that G is a collision-resistant hash function.

Further Reading
Any cryptography book contains more information about hash functions and signa-
ture schemes. Our treatment here was superficial (as we did not, for example, treat
keyed hash functions). Read the security definitions in Modern Cryptography [24]
pertaining to collision resistance, pre-image resistance and second pre-image resis-
tance. Read the security definitions for existential unforgeability. In the same book,
you can find constructions for signature schemes using various methods, including
some details on elliptic curves. Other good books that review these topics and
talk about how to build a hash function or a signature scheme are Introduction
to Modern Cryptography [24], A Graduate Course in Applied Cryptography [7], or
Foundations of Cryptography [16, 17].

In our examples, we considered a (2κ + 1)-bit message space as an illustrative
example. For a complete and nuanced cryptographic treatment of arbitrary-sized
message spaces, which is beyond the scope of this book, refer to the seminal paper
by Rogaway and Shrimpton [29] that formalized and proved these notions.
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Chapter 3

The Transaction

3.1 Coins
We are now ready to start creating money. Given our insight that money comes
to be through mutual social agreement—a social construct—we can create money
simply by conjuring it through software. As long as it is difficult to forge and
everyone agrees who has what, it will become something that can take on value
through social agreement.

To solve the problem of knowing who has what, we will employ an unusual
strategy: We will require that every node on the network knows who owns what.
There are privacy and efficiency issues with this, and we will resolve both later.

Let us imagine how we can model the transfer of money between two parties.
We need to represent that Alice made a payment to Bob of some particular amount.
We will represent this through a transaction. We will draw a transaction as a node
(a circle) with an incoming edge and an outgoing edge. The incoming edge is called
the input and illustrates who is paying. The outgoing edge is called the output and
illustrates who is getting paid. We will draw the amount being transacted above
the edge and the owner below the respective edge. A transaction of 1 unit between
Alice and Bob is illustrated in Figure 3.1. This may seem like an unusual way to
illustrate things, but it will soon become clear why we are adopting it.

Alice Bob

1 1

Figure 3.1: A transaction paying 1 unit of money from Alice to Bob.

For Alice to spend this money and give it to Bob, she must have been given
this money previously. We will illustrate this by the output of one transaction
connecting to the input of another, as illustrated in Figure 3.2.

Money changing hands in this manner is referred to as a coin. A coin has a
current owner, denoted in the final outgoing output edge which is not connected
to another transaction as input. It has a history of previous owners. The outgoing
output edge of a transaction that is not connected to another transaction is an
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Alice Bob

1 1

Charlie

1

Figure 3.2: Alice pays 1 unit of money to Bob. She received this money from
Charlie.

output available for spending. It is a dangling output and it is known as an Unspent
Transaction Output (UTXO).

As we discussed in the signatures section, we will use public keys for identities.
Our transactions will not contain a payment from “Alice” to “Bob”, but from some
public key (whose respective secret key is held by Alice) to some other public key
(whose respective secret key is held by Bob). This is illustrated in Figure 3.3. How-
ever, for convenience, we will write out Alice and Bob in place of their public keys,
understanding that the payments are made to public keys and not legal identities.
An appropriately encoded public key to which a payment can be made is also known
as an address. An address can be exchanged between counterparties even before
any transaction takes place.

840b...4e93 3b6a...da29

1 1

Figure 3.3: A transaction pays from one public key to another. It does not contain
real names or other identifying information.

3.2 Multiple Outputs
It may be useful to pay for multiple things with a single transaction. If Alice
receives her salary through one transaction, she may want to spend it on both her
rent as well as on a book. A transaction can have multiple outputs. Each of the
outputs may have a, potentially different, recipient public key and a, potentially
different, amount. An example is illustrated in Figure 3.4. Each of the outputs
can be spent independently. For example, Alice’s landlord can spend his money
while the bookstore doesn’t. This transaction consumes one input and produces
two outputs.

Bookstore
50Alice

Landlord1000

950

Figure 3.4: Alice uses her salary, the incoming edge, in a single transaction to pay
for both her rent and a book in two different outgoing edges.
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An outgoing edge can either be spent (if it is connected to another transaction)
or unspent (if it is not connected to another transaction). It cannot be partially
spent. A UTXO can only be spent in its entirety by being connected as input to
a new transaction. If Alice wants to use part of her salary to buy a book, and
keep the rest of her salary for later spending, she must still spend her salary output
in its entirety and use it as a transaction input. She creates two outputs in this
transaction: One paying the bookstore, and the other paying back to herself. The
second output is the new UTXO that she can use to spend her remaining salary at
a later time. This is known as a change output and is illustrated in Figure 3.5.

Bookstore
50

Alice
950Alice

1000

Figure 3.5: Alice uses her salary, the incoming edge, in a single transaction to pay
for a book (top output edge). She uses the rest of her money to pay the change
back to herself (bottom output edge).

Coins are often spent in a series of transactions like that. Alice uses her salary
to pay for a series of things. She first pays for a book, then gives herself the change
of that transaction. In a next transaction, she pays for an apple, and then gives
herself the change of that. She then pays for a coffee, and gives herself the change
for that. This process is illustrated in Figure 3.6. This graph has four UTXOs:
Alice’s remaining salary of 944 units, the payment for the book store of 50 units,
the payment to the fruit market for 1 unit, and the payment to the coffee shop for
5 units. The left-most edge, Alice’s original salary of 1000 is not a UTXO, since it
is spent. Even though there are four UTXOs, only three transactions are depicted
in this graph.

Coffee shopFruit market

Alice
950

Alice

Bookstore
1000

50 1

Alice
949

Alice
944

5

Figure 3.6: Alice uses her salary, the left-most edge, in a series of transactions,
always giving change back to herself. The bottom-right edge is her remaining
salary.

3.3 Multiple Inputs
It is also possible to combine multiple inputs into a single transaction to make
a larger payment. For example, Alice can use two of her salaries, each of which
resides in a different transaction output, to make a down payment for the house she
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is buying. This is illustrated in Figure 3.7. This transaction consumes two outputs
and produces one new output.

1000

Alice
1000 House

Alice 2000

Figure 3.7: Alice combines two of her salaries (left, incoming edges) to pay for her
house (right, outgoing edge).

Typically, a transaction will have one or more inputs and exactly two outputs.
Alice will use one or more payments she has received (including previous change)
to pay for something she is purchasing, and give herself the change remaining from
the purchase.

3.4 The Conservation Law
Money needs to be scarce. When money is transacted, new money must not be
created out of nothing. The input amounts to a transaction must match the output
amounts of the same transaction. This is known as the conservation law. Let us
denote by tx a transaction, by tx.ins its array of inputs, and by tx.outs its array
of outputs. For each input in in tx.ins, let us denote by in.v the amount in the
particular input, and similarly for out. We can write the conservation law in an
equation.

Definition 11 (Conservation Law). Given a transaction tx, we say that it obeys
the Conservation Law if ∑

in∈tx.ins
in.v =

∑
out∈tx.outs

out.v

Most transactions will obey this law. However, money must come from some-
where, and so there must be some initial transactions that do not obey this law.
These are known as coinbase transactions. Even though they have valued outputs,
they have no inputs. They are the only ones that do not respect the Conservation
Law. Coinbase transactions follow very particular rules and they must be desig-
nated and limited, in order to have scarcity. We will explore the exact rules in more
detail when we speak about macroeconomics in Chapter 5. Even though there can
be transactions with no inputs (the coinbase transactions), every transaction must
have at least one output.

3.5 Outpoints
Each transaction is given an identifier known as the txid . This is obtained by
hashing the transaction data (including all of its inputs and outputs).

Since an input of a transaction is always spending a previous output, the input
can just be a reference to a previous output. To reference an output, we need
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to specify the transaction it belongs to, using its txid, as well as the index of the
output (whether it is the first output of the transaction, or the second output of
the transaction, and so on). The pair (txid, idx) is used in place of an input and is
sufficient to uniquely specify a previous output. The value idx is simply a number
0, 1, 2, . . .. This pair is known as an outpoint. An outpoint example is illustrated
in Figure 3.8. We will illustrate the outpoint pair on top of an incoming edge to a
transaction, although this will typically be implicit.

1
Charlie

19Alice Bob
1 1

12
(12, 1)2

Figure 3.8: The transaction number 19 has a single input that spends the output
number 1 (to Alice) of transaction number 12. The output number 0 of transaction
number 12 (to Charlie) is still unspent. Here, we have highlighted the outpoint
pair (12, 1) that connects the input of transaction 19 with the specific output of
transaction 12.

3.6 The UTXO Set
The whole history of payments in our system forms a transaction graph. This is
a Directed Acyclic Graph (DAG). It cannot contain cycles because transactions
must be strictly orderable in the way that they spend: the input of a next trans-
action refers to outputs of previous transactions through outpoints that contain
their hashes in the form of txids. An example transaction graph is illustrated in
Figure 3.9. In this diagram, we are not showing the edge owners or amounts for
conciseness. As new payments are made in the system, new transactions are added
to the graph, but existing transactions are not modified, and previously added
transactions are not removed. This is an append-only graph.

Some transactions in the graph have outputs that have all been spent, and we
will never need to care about them again. Some transactions have dangling outputs,
and so their outputs are available for spending. The money that is available for
spending in the system is in the UTXOs. The set of all UTXOs forms the UTXO
set.

Transactions in the transaction graph can be ordered in a sequence of transac-
tions. We can do this by ordering the graph in topological order. We start with
an empty sequence of transactions and we place the transactions from the graph
into the sequence one by one, ensuring each transaction appears only once. The
strategy we use to place transactions in the sequence is that we always choose a
transaction whose inputs point to transactions that have all already been placed
in the sequence. Since coinbase transactions have no inputs, they can always be
placed in the sequence. We continue in this manner until all transactions have been
placed into our sequence. There may be multiple ways to order transactions in this
manner, but there will always be one way to do it. All of the ways are consistent:
each transaction that spends from another transaction is placed in the sequence
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after the transaction that it spends from. This sequence of transactions, ordered
in this consistent manner, is known as a transaction ledger. In Figure 3.9, transac-
tions are labelled in one possible consistent order. As new transactions are added to
our graph, they can also be appended to the transaction ledger while maintaining
consistency.

4

3 5

6

7

8

9

10

11

12

131

2

Figure 3.9: A transaction graph with 3 coinbase and 10 non-coinbase transactions.
Coinbase transactions are shaded blue. There are 23 outputs, of which 6 belong to
the UTXO set. The UTXO set is shaded red. Transaction number 8 contains both
a spent and an unspent transaction output.

Each node in our network stores the whole transaction graph. When a party
wishes to make a payment, they create a new tranasction and broadcast it to the
network. This transaction is received by the other peers, who add it to their local
transaction graph. Now everyone knows who owns what by looking at their local
UTXO set. The sum of all the values in the UTXO set is equal to the total amount
of money in the system.

In particular, if I, as an honest node, want to know how much money I have,
I look at my local UTXO set and collect all those UTXOs who are marked with a
public key whose respective private key I am in possession of. Summing all of their
values gives me my current holdings.

3.7 Transaction Signatures
For a transaction to be valid, its inputs must point to outputs whose spending
has been authorized by their rightful owner. This can be done by signing the new
transaction data using the secret key that corresponds to the public key annotated
on the previous output being spent. Let us look at the transaction that Alice
creates in Figure 3.10. This new transaction, transaction 19, is spending from an
output that belongs to Alice. The output being spent is the output with index 0 of
transaction 7. The new transaction is paying Bob 1 unit and Charlie 2 units, for a
total of 3 units.

Alice must authorize this spending by signing using her secret key. The data that
she signs are the contents of the new transaction: The owners and amounts in the
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19Alice

Bob
3

1

7
(7, 0)2

Alice signs

Charlie
2

Figure 3.10: Alice creates a new transaction, transaction 19, by which she pays Bob
1 unit and Charlie 2 units. The transaction data include Bob’s public key, Charlie’s
public key, the outgoing amounts 1 and 2, and the outpoint (7, 0). These must all
be signed by Alice’s secret key.

outputs, and the outpoint of the input. It is not necessary to include the value of the
input here, as the outpoint uniquely identifies it. It is imperative that Alice includes
the public key of Bob in her signature when she creates this transaction. Otherwise,
a malicious party, Eve, on the network could swap out Bob’s public key with her
own. If a secure signature scheme is used, any such forgery will be impossible due
to existential unforgeability. The same applies in case Bob attempts to alter the
amounts allocated to him and Charlie: Alice’s signature will be invalidated, and
the transaction will no longer look valid to any observers. Alice’s signature on the
transaction is packed together with the transaction and accompanies it whenever
it is broadcast on the network.

pk1

37
(7, 1)42

Alice signs using sk1, sk2

pk 2

7

810

3
Zeta

(8, 0)

David
39

David

Zeta

19
Bob

8

Charlie
2

Figure 3.11: Alice creates a new transaction, transaction 19, by which she pays
Bob 8 units and Charlie 2 units. The transaction data include Bob’s public key,
Charlie’s public key, the outgoing amounts 1 and 2, and two outpoints, (7, 1) and
(8, 0). All of these data must be signed twice: Once using Alice’s sk1 secret key,
and once using Alice’s sk2 secret key, giving two different signatures σ1 and σ2 on
the same data.

If Alice wishes to create a transaction with multiple inputs she controls, she
must provide a signature corresponding to each of the inputs. Consider the example
illustrated in Figure 3.11. Here, Alice wishes to spend two outputs that she owns.
The first output has been paid to Alice’s public key pk1. The second output has
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been paid to Alice’s public key pk2. Alice controls the respective secret keys sk1
and sk2. Alice creates a new transaction, transaction 19, containing the desired
inputs and outputs. In the inputs, she places two outpoints pointing to the two
outputs she wishes to spend. The new transaction data, including the inputs and
outputs, must all be signed twice: First, using Alice’s sk1 (and verifiable using
pk1), and secondly using Alice’s sk2 (and verifiable using pk2). This will yield two
different signatures σ1 (created using sk1) and σ2 (created using sk2). Both of these
signatures verify on the same data, but using different public keys. A signature for
the outpoint connected to each of the transaction’s inputs must accompany the
transaction whenever it is broadcast. A transaction is accompanied by as many
signatures as it has inputs.

3.8 Transaction Creation
When the honest node Alice wishes to create a new transaction, she performs the
following steps:

1. She requests the public key of the recipient through some off-chain means
(e.g., via e-mail or a QR code).

2. She picks the UTXO outputs she wishes to spend from.

3. She creates a new transaction with the output public keys and amounts she
wishes to pay to.

4. She creates transaction inputs where she places outpoints pointing to the
UTXOs she wishes to spend from.

5. She collects all the above transaction data into a message.

6. For each of the outpoints, she uses her respective private key to sign the
message.

7. She broadcasts the transaction and its signatures to the network.

3.9 Transaction Format
So far, we have treated a transaction as an abstract object. It is time to make this
concrete. A transaction consists of its inputs and outputs:

1. Its list of inputs. Each element in this list is an outpoint, a pair in the form
(txid, idx).

2. Its list of outputs. Each element in this list is a pair containing a public key
(the owner of the output) and an integer amount.

An example transaction object looks like this:

{
inputs: [

{
outpoint: (
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"cc6a88afaca94fec238258e3665d64cd
de592e3ea13f151eca37d5e6589cd169",

0
)

},
{

outpoint: (
"3a648c42b90af46b9bba7ae723451002
aa53baba187020051e0c32112bf458a0",

3
)

}
],
outputs: [

{
pk: "36dec8c46741efdab93a77f8fc75acec

6e290b1ce0f280e04753db5c864a6469",
amount: 5012900000000

},
{

pk: "f71c1e7478459d90764d59dd9cb0ea9f
62406d2c1412dea7c6de0c0355183066",

amount: 3170000000000
},
{

pk: "d9169b9601f3121f316f44e4d1bd0ecc
d6d07df4d152fdcbf59a210e7c77e467"

amount: 135000000000
}

]
}

The amounts are given as integers. These are given in the smallest denomination
possible that we want to allow our cryptocurrency to take. For example, Bitcoin
uses the satoshi unit, equal to 10−8 bitcoin, whereas Ethereum uses the wei, equal
to 10−18 ether. The coins cannot be further divided beyond integer amounts. This
avoids floating point errors.

The transaction example above is an unsigned transaction, and cannot be broad-
cast to the network as-is. Signatures must be included with each outpoint to au-
thenticate the respective input. A signed transaction looks something like this:

{
inputs: [

{
outpoint: (

"cc6a88afaca94fec238258e3665d64cd
de592e3ea13f151eca37d5e6589cd169",

0
),
sig:
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"680b733e57690024d18025603f6df238
b6f181c2de76b96961a90c1f0fc0d1e2
42795ddd48f06e6ac2760579459b6b98
ef77d91c4278dd0a9feaac91a57eae08"

},
{

outpoint: (
"3a648c42b90af46b9bba7ae723451002
aa53baba187020051e0c32112bf458a0",

3
),
sig:

"13f1eb894921c7535ac51aac874187ac
993b0dcf7b3b439b15cf408dbf66db2b
7739605ef9ab0bc79be7957a9e15ef0b
e0dd92524c8881cc3fd3742c621e8c0b"

}
],
outputs: [

{
pk: "36dec8c46741efdab93a77f8fc75acec

6e290b1ce0f280e04753db5c864a6469",
amount: 5012900000000

},
{

pk: "f71c1e7478459d90764d59dd9cb0ea9f
62406d2c1412dea7c6de0c0355183066",

amount: 3170000000000
},
{

pk: "d9169b9601f3121f316f44e4d1bd0ecc
d6d07df4d152fdcbf59a210e7c77e467",

amount: 135000000000
}

]
}

Naturally, the particularities of how transactions are encoded differ from block-
chain to blockchain in practice. For example, Bitcoin uses the secp256k1 signature
scheme to produce the public keys to receive payments and sha256 as the hash
by which txid is calculated. In contrast, Ethereum uses the keccak hash to calcu-
late txid, and Cosmos Hub uses the ed25519 signature scheme to generate public
keys. The encoding of addresses also differs from cryptocurrency to cryptocur-
rency. For example, Bitcoin encodes addresses by taking the public key, hashing
it with two different hashes (ripemd and sha256), and then applying the base58
encoding function which adds some checksums to avoid mistypes. These details are
implementation details and are immaterial to the foundational functionality of the
system.
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3.10 Transaction Validation
In order to verify an incoming transaction from the network, each node must main-
tain the current transaction graph and in particular the current UTXO set. When
a node sees a new transaction arriving from the network, it checks the new trans-
action’s inputs to see if they belong to its current UTXO set. If the transaction is
valid, the node adds the new transaction to its transaction graph. It also removes
the new transaction’s inputs from its current UTXO set, and adds the new trans-
action’s outputs to its current UTXO set. This is how the transaction graph and
the current UTXO set of each node evolve.

When a new transaction arrives at the door of a receiver for the first time,
he must check that it is a valid transaction. This process is called transaction
verification. It involves checking that this transaction is rightfully spending the
money that it is claiming. If a transaction is deemed valid, then it is gossiped to
the rest of the network. If a transaction is deemed invalid, then it is rejected, and it
is not gossiped to the network. This protects from spammy transactions occupying
the network. The checks performed when verifying a transaction include checking
the Conservation Law and checking the signatures on the new transaction.

To perform these checks, he must follow the outpoints to find out the corre-
sponding public keys and amounts. When the honest party Bob wishes to verify a
transaction tx received from the network, he performs the following steps:

1. For each transaction input, he resolves the respective outpoint.

(a) He checks that this outpoint is in his current UTXO set.
(b) He retrieves the public key and amount of this outpoint.
(c) He checks that a signature on the new transaction data verifies using the

public key of the outpoint.

2. He checks that the Conservation Law holds (or that this is a valid coinbase
transaction).

3. He removes the outpoints from his current UTXO set.

4. He adds the new outputs to his current UTXO set.

Let us discuss the step 1a above. This is a necessary condition to ensure that
the money really does belong to its rightful owner and has not been previously
spent. Consider what it would mean if this step failed. The verifier here is seeing
a new transaction, a transaction he has never seen before. Yet, this transaction is
spending from an output that is not in his UTXO set.

It’s possible that this outpoint was never added to the UTXO set in the first
place. This can occur for two different reasons. The first reason is malicious.
The adversary is creating a transaction spending from a non-existing outpoint.
This transaction must be rejected. The second reason is benign, and it is a race
condition. If Alice pays Charlie in one transaction tx1 and then Charlie pays David
in another transaction tx2, which spends from tx1, then tx1 and tx2 will be broadcast
in this order. However, the verifier may receive them on the network in a different
order than they were sent. He can see tx2 first, and tx1 only later. If a verifier
sees tx2 first, then he cannot verify this transaction before he has seen tx1. After
all, he doesn’t have the necessary public key to verify the respective signature, and
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he doesn’t have the necessary amounts to verify the Conservation Law. He must
necessarily reject tx2. It is not the responsibility of the verifier to hold onto tx2 until
tx1 is received, because he cannot know if such a tx1 exists in the first place. For
all it knows, an adversary could be attempting to spend a non-existent outpoint.

Alternatively, it’s also possible that this outpoint was added to the UTXO set,
but was later removed from the UTXO set. This means that there exists a different
transaction which spends from the same output. This is called a double spend, and
it must be rejected. Double spends are necessarily adversarially created. Honest
parties do not produce double spending transactions.

Definition 12 (Double Spend). In the UTXO model, a transaction tx is a double
spend or a conflicting transaction with another transaction tx′ ̸= tx, if tx and tx′

both have some outpoint in their inputs that is the same, i.e.,

∃i, j ∈ N : tx.ins[i].outpoint = tx′.ins[j].outpoint

Transactions broadcast from different parts of the network may arrive in a dif-
ferent order in other parts of the network. As different nodes on the network see
different transactions at different times, each node may have a different opinion on
what their current UTXO set is. This can lead to race conditions, which we tackle
in the next chapter.

Problems
TBD

Further Reading
The UTXO model was first put forth in the context of Bitcoin by Satoshi Nakamoto.
Satoshi introduced blockchains, and his paper, Bitcoin: A Peer-to-Peer Electronic
Cash System [26] is the seminal paper that spoke about them for the first time.
Consider it mandatory reading. It is an easy and short paper that includes details
about the UTXO model that we explored in this chapter, but also blocks, chains,
and SPV proofs that we will explore in the next chapters. The denomination satoshi
in Bitcoin is named after Satoshi Nakamoto. Satoshi was a pseudonym of an alleged
Japanese man who created both the Bitcoin paper and the first Bitcoin implemen-
tation in C++ during the years 2008-2009. After two short years of participation
in the community, he disappeared mysteriously, never to be heard from again. His
identity remains a mystery.

For many more details on transaction format particularities in the specific imple-
mentation of the UTXO model in Bitcoin, refer to the Bitcoin Developer Guide [1].
The books Mastering Bitcoin [2] and Mastering Ethereum [3] go into a lot of detail
about the particularities of transaction, key, and address formats for Bitcoin and
Ethereum respectively.
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Chapter 4

Blocks

4.1 The Network Delay
In the last chapter, we created a monetary system in which participants can issue
transactions and transfer money between one another while maintaining scarcity.
We ensured participants can only spend their own money by using an unforgeable
signature scheme to authenticate transactions that everyone verified. By gossiping
transactions on the network, every participant assembled them, upon verification,
into a transaction graph, and reading the UTXO set of that transaction graph
enabled participants to determine who owns what. Furthermore, we made that
transaction graph append-only. Our intuition is that, since every transaction is
gossiped, everyone will eventually arrive at the same transaction graph, and the
population will reach consensus on the UTXO set, even if some transactions take a
moment to arrive to distant parts of the network. Note that, it doesn’t matter to us
if different honest parties observe transactions arriving on the network in different
order, as long as all the parties compute the same UTXO set. This is the only thing
that’s important to determine who owns what. If two honest nodes accept the same
set of transactions, even if they have processed them in different order, they will
arrive at the same transaction graph and the UTXO set computed by them will be
the same.

Of course, if a transaction is delayed while in transit on the network for ever,
some nodes will not receive it and they will not be in consensus with the rest of the
network, but this contradicts our non-eclipsing assumption that we introduced in
Chapter 1. To make our intuition more precise, let us quantify how long it takes
for a message to reach the whole network when it is broadcast by any party. We
call this the network delay parameter.

Definition 13 (Network Delay). The network delay parameter ∆ measures the
maximum time it takes for a message to travel from one honest party to every other
honest party on the network.

Because honest parties gossip adversarial messages, this network delay ensures
that even adversarial messages make it across the network within ∆ time. That is,
if an honest party receives an adversarial message at some point in time, then every
honest party will see the same adversarial message within time ∆.
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Now we can express our intuition that nodes reach consensus more precisely:
While some transactions may be delayed up to ∆ time, if no transactions are broad-
cast for a time of ∆, everyone’s transaction graph will converge to be the same, and
the UTXO set will be shared among along all honest parties. Unfortunately, this
intuition is misguided, and things are not that simple. Things break down when
double spend transactions are introduced by the adversary.

4.2 The Double Spend
Let’s try to understand the double spending problem a little more carefully. Eve
receives 1 unit of money from Alice through a transaction tx1 as illustrated in
Figure 4.1. The transaction tx1 was created honestly by Alice and has one input of
1 unit coming from Alice, and one output of 1 unit paying Eve’s public key. Eve
now creates two transactions: The first transaction, tx2 consumes the single output
of tx1 and pays 1 unit back to Alice. The second transaction, tx′2 also consumes the
single output of tx1 and pays 1 unit, this time to Eve.

Suppose that two other parties, Charlie and Dave, have already seen tx1 on the
network, but have not yet received either of tx2 or tx′2. If Charlie receives tx2, he
will accept this transaction as valid. The transaction’s input contains an outpoint
that points to an element of the UTXO set in his view, since the output of tx1 has
not been previously spent. Furthermore, the transaction contains a valid signature
by Eve created with the correct secret key, and it satisfies the Conservation Law.
Upon accepting tx2, Charlie updates his UTXO set, removing the output of tx1
and adding the output of tx2 to it. If Charlie now receives tx′2, he will reject this
transaction, as it is spending from an output that is not in the UTXO set in his
view.

On the contrary, Dave receives tx′2 first, and tx2 after. When Dave receives tx′2,
he considers this a valid transaction, because it is spending from the UTXO set
in his view. Dave, contrary to Charlie, believes that the output of tx1 is still in
the UTXO set. Dave then updates his UTXO set, removing the output of tx1 and
adding the output of tx′2 to it.

At this point Charlie’s and Dave’s view are in disagreement. This is a problem.
If Alice has also received tx2 prior to tx′2, she will justifiably believe that Eve paid
her. While Charlie will accept Alice’s money, because it is in his UTXO set, Dave
will not accept Alice’s money. We have arrived at a situation where Alice’s money
is not acceptable to everyone. We have lost consensus on who owns what.

Alice

1
Eve

Alice
1

1

Eve
1

tx1

tx2

tx′2

Figure 4.1: A double spend transaction. Alice paid Eve 1 unit through tx1, but
Eve spent it in both tx2 and in tx′2, which have different recipients.
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4.3 Simple Ideas Don’t Work
Let us consider three simple ideas to resolve the double spending problem that first
come to mind. Sadly, these ideas won’t work.

timetx2 tx′2

Figure 4.2: The first idea is unviable because it allows the adversary to retroactively
invalidate an earlier transaction much later. Here, tx′2 is initially withheld, but
broadcast much later, causing an invalidation to the earlier tx2 transaction.

Idea 1: Reject double spends altogether. Honest parties never double spend.
Since the adversary is the only one creating double spends, why do we need to
provide any assurances? We can opt to simply invalidate that money. We add the
following rule to our protocol:

If you see a transaction that is a double-spend, then consider all of
the transaction outputs that pertain to the double spend transactions
invalid.

This approach is problematic. The reason is that the adversary can retroactively
take back a payment: She initially broadcasts tx2 to the network paying Alice, but
keeps tx′2 withheld, as illustrated in the timeline of Figure 4.2. Alice, like everyone
else, observes tx2 on the network, but not tx′2. She thinks this is a normal transaction
and accepts the payment. In exchange for this payment, Alice provides a service
to Eve: she serves her coffee. At a later time, Eve has enjoyed the coffee and has
departed from Alice’s establishment. At this point, Eve broadcasts tx′2, a double
spend of tx2. Suddenly, everyone on the network considers both tx2 and tx′2 invalid.
Alice’s money is gone. Therefore, we cannot adopt this construction.

tx2 tx′2Charlie

timetx′2 tx2

Dave

Δ

Figure 4.3: The second idea is unviable because parties have views in disagreement
about transaction order. Here, Charlie believes tx2 precedes tx′2, whereas Dave
believes tx′2 precedes tx2.

Idea 2: Accept the first transaction seen. As we saw, two different honest
parties can disagree on the order in which two transactions arrived on the net-
work. The situation is illustrated in Figure 4.3. Therefore, the following simple
construction does not work:

Among double spending transactions, accept the first, and reject every
subsequent transaction.
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However, we now note that these two transactions must be broadcast to honest
parties in close succession, and in particular within time ∆. If the adversary were
to reveal tx2 to Charlie first, but then wait for more than ∆ time until she revealed
tx′2 to Dave, then Charlie would have gossiped tx2 and Dave would have receive
it within ∆ and prior to seeing tx′2. In that case, Charlie and Dave would be in
agreement. In order for the adversary to cause disagreement, she must broadcast
the two double spending transactions to two different honest parties within time ∆
of each other. Yet, this is simple for an adversary to do, so we cannot adopt this
construction either.

tx2 tx′2Charlie

timetx2 tx′2
Dave

Δ
u

Figure 4.4: The third idea is unviable because parties disagree about whether tx2
and tx′2 have arrived within time u, and follow different policies. Here, Charlie
rejects both transactions, whereas Dave accepts tx2 and rejects tx′2.

Idea 3: Reject double spends within u. Why don’t we combine ideas 1
and 2? We saw that Idea 1 is problematic because it allows the adversary to
retroactively take back a transaction after a long time into the future. We also saw
that Idea 2 is problematic because it allows an adversary to cause disagreement
when two transactions are broadcast in close succession. This creates a natural
new construction idea:

Upon seeing a transaction, wait for some time u ≥ ∆. If a double spend
appears within the window u, reject all double spending transactions.
However, if u has passed and we have not seen any double spends, accept
the single transaction that we have seen. If a double spend appears in
the future, just reject that one.

At first sight, this third idea seems to work: After time u has passed, either the
money is accepted or not. The adversary cannot walk away as she did against Idea
1. If the adversary broadcasts two conflicting transactions within ∆ time, as she
did against Idea 2, they will both be rejected. It won’t matter that different parties
saw them in different order.

Sadly, upon closer inspection, this idea does not work, either. The strategy of
the adversary is now to cause disagreement between Charlie and Dave with regards
to whether or not the two transactions appeared within time u. The problematic
situation is illustrated in Figure 4.4. The adversary initially broadcasts tx2 to both
Charlie and Dave. Both Charlie’s and Dave’s clocks start ticking to measure the
time u. Right before time u hits, the adversary broadcasts tx′2 to Charlie. Now,
Charlie has seen a double spend within time u, and so he rejects both tx2 and tx′2.
He also rebroadcasts tx′2 to Dave, but this message will require time ∆ to reach
Dave. In the meantime, time u has passed, and Dave accepts tx2. When tx′2 arrives
on Dave’s end, Dave has already accepted tx2 and now rejects tx′2. Now Charlie
and Dave are in disagreement: Dave thinks tx2 is valid, whereas Charlie thinks tx2
is invalid.
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Try to think of more simple ideas to resolve this ordering issue. You’ll see that
none of them will work. For example, placing a timestamp within a transaction to
ensure that every honest party simultaneously applies a transaction doesn’t work,
either (why?). Neither does the policy of accepting the transaction with the smallest
txid among double spends (why?). We’ll need to invent heavier artillery to attack
this problem. Over the next few sections, we’ll gradually derive the concepts of a
block and a chain. While we do this, we will find issues with our scheme and keep
augmenting it until we arrive at a fully working safe and live protocol.

4.4 Ledgers
Even though honest parties receive transactions in a different order on the network,
we would like to have them coordinate with one another to report them in the same
order. Each honest party will report a ledger, an ordered sequence of transactions.
This ledger will not necessarily contain the transactions in the order they were
received from the network. It may also not immediately report some transaction as
soon as it is received from the network, but, akin to Idea 3 of Section 4.3, it may
need to delay reporting it on its ledger for a bit. By reading that ledger reported
by an honest party one transaction at a time from left to right, we can reconstruct
the transaction graph and arrive at the UTXO set. If the honest parties agree on
their reported ledgers, they will agree on the UTXO set. We’ll therefore concern
ourselves with the question of whether we can achieve consensus among the ledgers
reported by honest parties.

We will soon figure out what each honest party should do internally in order
to produce a ledger that is consistent with every other honest party, but before we
get to how to do that, let us first more clearly articulate what exactly it is that we
want to achieve.

We wish to build an honest party construction Π which we call the full node.
This will be a piece of code which will be identically executed by all honest parties.
It will implement peer discovery, the gossiping network communication to exchange
messages on the network, and so on. In addition, we’ll make Π expose two func-
tionalities: A write functionality, and a read functionality. The write functionality
accepts a brand new transaction. This transaction is broadcast and gossiped to
every other party on the network by the full node. The read functionality returns
a ledger of transactions. These functionalities are used by the wallet. Together,
the full node and the wallet constitute the software that is running on the human
user’s machine. The human user only interacts with the wallet, while the full node
sits on the backend.

The wallet is a piece of software that is capable of creating and signing new
transactions to make payments as instructed by the user. The wallet also shows
whether a payment was received, and displays the balance of the user. These func-
tionalities are made possible by having access to the write and read functionalities
exposed by the full node. The write functionality is what the wallet uses to broad-
cast a new transaction into the network, whereas the read functionality allows the
wallet to obtain a ledger that it can then use to obtain the UTXO set in order to
display whether a payment has been completed and to calculate the user balances.
This architecture is illustrated in Figure 4.5.

We’ll have more to say about the wallet portion in the next chapters. For now,
let us focus on how to build the full node. Our goal will be to have all the honest
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Figure 4.5: The human user interacts with the wallet. The wallet interacts with
the full node by invoking its write and read functionalities. The full node interacts
with the network.

full nodes agree on the ledgers they are reporting when their read functionality is
invoked. That way, everyone will arrive at the same UTXO set and agree who owns
what.

Definition 14 (Ledger). A ledger of an honest party P reported at time r, denoted
LP
r is a finite sequence of transactions returned when the honest party P invokes

the read functionality of its honest protocol Π.

We take note here that ledgers are dependent on both P and r. It is nonsen-
sical to speak about “the ledger” without specifying who and when. While these
parameters may sometimes be implicit, it is imperative that we understand what
we are talking about. Ignoring the who and the when of the ledger, and speaking
about “the ledger” as if it is a global view, is a common cause for confusion and
misconception. As we saw in the previous section, the ledgers of different honest
parties may be in disagreement, and there might not even be a well-defined global
ledger.

We want the ledgers reported by honest parties to have two virtues. We give
an intuitive definition of these virtues now, but we will return to define them more
formally in Chapter 12.

Definition 15 (Safety (informal)). For any two honest parties, their reported
ledgers at any point in time are be equal.

Definition 16 (Liveness (informal)). If an honest party writes a transaction into
its ledger, then this transaction appears in the ledgers of all honest parties “soon”.

Let us think what these virtues are saying. If a ledger has safety, then bad things
don’t happen. We do not run into double-spend situations, or into disagreements
about who owns what. If a ledger has liveness, then good things happen. When an
honest party attempts to issue a transaction, this transaction actually does take
place.

It is easy to build a protocol that has safety or liveness, but not both together.
Safe but not live. A safe but not live protocol acts as follows. Whenever the read
functionality is invoked, it returns the empty sequence of transactions as the ledger.
Whenever the write functionality is invoked, it ignores the transaction being written.
It never reads or writes anything from the network. Because the read functionality
always returns the same thing, safety is trivially satisfied. Liveness, however, is
not satisfied. When an honest party attempts to make a transaction, it is never
reported in the ledgers of other honest parties.
Live but not safe. A live but not safe protocol acts as follows. Each honest
party begins with an empty initial ledger. Whenever the write functionality is
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invoked with a transaction, this transaction is appended to the local ledger and
broadcast to the network. When a new transaction is received from the network, it
is gossiped to the rest of the network and appended to the local ledger. The read
functionality returns the local ledger. This protocol is live because every honest
transaction makes it to the ledger of every honest party. However, it is not safe,
because transactions are reported on the ledgers in the order they are received from
the network, and this order may be different for different parties.

Our design goal for the rest of this book will be to build protocols that are both
safe and live simultaneously. Those protocols are called secure.

Definition 17 (Security). A protocol is called secure if it produces ledgers that are
both safe and live.

4.5 Rare Events
We previously determined that the root cause of double spending transactions being
problematic is because the adversary can issue them in short succession, and in
particular within time ∆. It would be useful to enforce that the adversary issues
transactions at a slower rate. We’d like to limit the rate at which the adversary can
issue transactions at once every ∆, with periods of silence in between. If transactions
are spaced apart by ∆ time, then no harm can come from double spends. We can
simply adopt the strategy of accepting the first among multiple double spending
transactions, and ignoring subsequent double spends.

To force the adversary to issue transactions ∆ apart, we’d like to require her to
obtain a ticket before she can issue a transaction, and each of these tickets should
be obtained every ∆ time. Then, when she issues a transaction, the adversary will
be required to associate the transaction with the ticket, and that will cause the
ticket to be expended. The same ticket cannot be used for multiple transactions.
Of course, our protocol does not know who is adversarial and who is honest and
must treat everyone equally, so the ticket system applies to honest and adversarial
parties alike.

If our tickets are issued more often than ∆ apart, this will not be a good protocol,
as double spends will still be possible, harming safety. On the contrary, if our tickets
are issued much longer than ∆ apart, the honest parties will take a long time to
issue transactions, and liveness will deteriorate. The choice of how often to allow
tickets to be issued highlights a theme that we will keep returning to throughout
this book: A trade-off between safety and liveness. This trade-off is illustrated in
Figure 4.6.

But how can we create such a ticketing system? How can we get them to behave
this way in a permissionless world, where there is no authority to issue these tickets
and ensure they are spread ∆ apart?

4.6 Proof-of-Work
There is a natural candidate for creating rare events like the tickets we need in a
permissionless world. When we introduced hashes in Chapter 2, we gave a brute-
force algorithm (Algorithm 4) that breaks the preimage property of a hash, but
takes exponential time. However, we can tweak the problem of finding a preimage
so that it is not an exact preimage, but a “close enough” solution. This will allow
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Figure 4.6: Positioning tickets in time. Tickets spread apart by slightly more than
∆ (top) achieve good safety and liveness. Tickets spread apart less than ∆ (middle)
can cause safety violations. Tickets spread apart much more than ∆ (bottom) cause
liveness to deteriorate.

us to create a problem that is moderately hard; it is not hard in the computational
sense, but we can tweak how long it takes to solve it. We are interested in “close
enough” hash preimages of the image h = 0; that is, we want an input B to the
hash function H, so that H(B) is a small enough number. How close is defined by
the value T , the target. We write this requirement in the form of an inequality:

H(B) ≤ T

This inequality is known as the proof-of-work inequality. Finding a B that
satisfies this equality is known as performing work. Remember that the output of
the hash function H(B) is a κ-bit binary number. We are comparing this number
against the value T , another number. The inequality is satisfied if H(B), treated
numerically, is not larger than the number T .

The challenge is to find the unknown value B so that the inequality is satisfied.
Of course, there will be multiple B values that satisfy this inequality. Upon solv-
ing this inequality, one obtains a ticket to issue a transaction. While solving the
inequality is moderately hard, and requires many trial-and-error invocations of the
hash function, verifying that the particular B satisfies the equation is very easy: It
requires just one hash invocation.

Algorithm 10 The proof-of-work algorithm.
1: function PoWH,T

2: ctr
$← {0, 1}κ

3: while true do
4: B ← ctr
5: if H(B) ≤ T then
6: return B
7: end if
8: ctr← ctr + 1
9: end while

10: end function
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To find a ticket, one can execute a strategy similar to the exhaustive search for
finding a preimage. We start at a random B = ctr and keep looking for a ctr that
satisfies the proof-of-work inequality by incrementing ctr and checking whether the
equation is satisfied. This is illustrated in Algorithm 10 and is known as mining.
The value ctr is known as the nonce, and has no significance beyond ensuring that
the proof-of-work inequality is satisfied. Once a party finds a ticket B, this ticket
can be gossiped to the network and relayed by others. Any party can check that the
ticket has a valid proof-of-work, without performing the exhaustive search again.
Intermediary nodes on the gossip network cannot modify the contents of a ticket
in transit, as this will invalidate the proof-of-work, and they would have to mine a
new ticket.

The larger we make the target T , the easier it is to solve the inequality. The
smaller we make the target T , the more difficult it becomes. That’s why we call
the value 1

T the difficulty: The larger the difficulty, the more difficult it is to find
a solution to the inequality. By increasing T , we space tickets closer together. By
decreasing T , we space tickets further apart from each other. At the extremes,
setting T = 0 makes the proof-of-work problem equivalent to finding the hash
preimage of 0, which needs exponential time. On the other end of the spectrum,
setting T = 2κ makes the proof-of-work problem trivial, because every hash satisfies
the inequality H(B) ≤ 2κ.

4.7 The Block
We have introduced a moderately hard problem that forces the adversary to spread
out her tickets in time by more than ∆. But how do we associate tickets with
transactions? We cannot just require the adversary to send a ticket together with
a transaction. The adversary may reuse a ticket multiple times, or may use a ticket
together with one transaction when communicating with one party and the same
ticket with another transaction when communicating with another party. We need
to somehow tie the ticket together with a transaction so that a ticket is only usable
for a particular transaction. To do this, we set B = tx ∥ ctr and require the ticket
to satisfy H(B) ≤ T , as before, where tx is the transaction we want the ticket to
be tied to. The notation ∥ denotes the concatenation of two strings (separating
them appropriately so that they don’t accidentally mix with each other by using an
appropriate encoding such as JSON). Now, upon receiving a transaction/ticket pair,
we can check that the ticket corresponds to the particular transaction. Furthermore,
if the adversary attempts to replace the transaction within B with a different one,
then this will cause H(B) to change. The value H(B) is committing to a particular
transaction; changing the transaction changes the value H(B) in a way that cannot
be predicted. If she changes the transaction, this will invalidate the proof-of-work
and the adversary will have to perform yet another exhaustive search to find a new
ticket.

We’ve solved one problem, but have introduced another: If we require one ticket
per transaction for the adversary, then we must do the same for the honest parties.
This means that at most one transaction can be executed every ∆. If the honest
party wants to issue multiple transactions, this will take a long time, and liveness
will deteriorate. In order to solve this, we will bundle transactions together into a
sequence x = (tx1, tx2, . . . , txn), and place this within the ticket, setting B = x∥ctr.
Instead of each ticket being associated with one transaction, each ticket is associated
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with a sequence of transactions x. Such a ticket is known as a block. The sequence
of transactions x is also known as the block payload. Now each honest party can
issue as many transactions as he wants in one go, as long as he is able to mine
one block. In practice, to save on communication, x may be a list of transaction
ids instead of the literal transactions themselves. We’ll see more ways to optimize
communication when we talk about Light Clients in Chapter 10. From now on, we
will no longer speak of tickets, but will speak of blocks, even if a block contains just
one transaction.

A natural question now arises: If we’ve bundled multiple transations together
into one block, hasn’t the double spending problem resurfaced? The answer is no,
because, in order to verify a block, all the transactions must be sent together in
the bundle. As part of our block validation rule, we will require that there are no
conflicting transactions within the payload x of a block. If x contains two mutually
double spending transactions, the whole block will be rejected. Blocks are either
accepted or rejected as a whole. We will not partially accept transactions within a
block.

Double spending transactions can still appear in different blocks, but the mod-
erate difficulty of the proof-of-work puzzle ensures that blocks are produced suf-
ficiently far apart. Like transactions, blocks are gossiped over the network. If
two blocks are transmitted at least ∆ time apart, then the first will arrive at the
doorstep of every honest party before the second. The second block, containing a
transaction that double spends a transaction in the first block, can then be rejected
by all honest parties. Again, here, the whole block will be rejected, not just the
particular pathological transaction.

4.8 The Mempool
Even though we allow each mining party to include many transactions into their
own blocks, honest parties are still encumbered with the responsibility to mine a
block before they can get their transactions accepted by others. This wait time
may still be long and this scheme is not very good for liveness. Worse yet, some
honest parties may have large computational power, while other honest parties may
have smaller computational power, and so the block generation time for each honest
party might be vastly different. It would be nice if we didn’t tie the liveness of each
honest party to that particular party’s computational power, but instead allowed
the honest parties to work together to confirm each others’ transactions.

Towards that purpose, we design the system as follows: A transaction can still
be issued independently of a block and broadcast to the network. The transaction is
gossiped until it reaches everyone on the network as usual. However, the transaction
is placed into a temporary waiting area called the mempool , ensuring double spends
are resolved one way or another (any of the simple ideas we discussed previously
can be used as strategies to resolve double spends). Each honest party maintains
their own mempool x of transactions that are still in limbo. Because the double
spending problem has not yet been solved by finding a block, different honest parties
may disagree about what their mempool looks like. However, each mempool is
independently locally consistent.

Definition 18 (Mempool). The mempool x of an honest party P at time r is the
sequence of transactions that have been received and validated, but have not yet been

57



included in a block.

Upon receiving a transaction from the network, an honest party performs the
usual transaction validation checks on it before adding the transaction to its own
mempool, so the mempool does not contain double spends. Of course, the mempool
of one honest party may contain a transaction which conflicts another transaction
in the mempool of another honest party. As honestly generated transactions can
always be appended to the transaction graph, the mempool of every honest party
will contain every honestly generated transaction that has not yet made it into a
block, as long as that transaction was broadcasted at least ∆ ago. When an honest
party tries to mine a block, he includes all the transactions in his mempool into
this block. This has the benefit that, whenever any honest party finds a block, all
pending honest transactions are included in that block, as long as they have been
issued more than ∆ time ago. The transactions in the mempool are ordered, and
so are transactions within a block.

We illustrate a block in Figure 4.7. We’ll follow the convention of drawing a
block as a rectangle and a transaction as a circle.

Figure 4.7: A block containing ordered transactions. We will draw a block using a
rectangle and a transaction using a circle.

When a transaction makes it into a block, we term the transaction confirmed .
An honest party invokes the read functionality of its ledger, only confirmed trans-
actions are reported. This ensures that ledgers are consistent, salvaging safety.
Liveness is guaranteed from the fact that an honest block will eventually appear,
and this will cause all the transactions in the mempool to become confirmed.

4.9 Chain of Blocks
Similar to transactions, we give blocks identifiers, which are the hashes of their
contents. A blockid of block B is the value H(B). Contrary to transactions, these
blockids will generally be a small value, because they all satisfy the proof-of-work
equation. Therefore, these hashes will begin with a run of 0s.

At this point, we have introduced blocks that function as tickets to allow for
the spaced-out broadcasting of transactions. However, our system is not yet safe.
There’s a problem: While the proof-of-work process ensures that the adversary
gets a block in regular spaced out intervals, the adversary is not guaranteed to
use these block at the time of issuance. Instead, the adversary could withhold a
couple of blocks and broadcast them all later in close succession, and in particular
closer than ∆ apart in time. This defeats the purpose we set to achieve. The

58



attack stems from the ability of the adversary to use blocks that are stale and have
been set aside for long. We can resolve the issue by requiring each block to be
fresh. We can do this by having the block include, in addition to its transactions,
a pointer to a previous recent block. This pointer, denoted by s, is the blockid of
the previous block known to the miner, and is known as the previd. Our modified
block format is now B = s ∥x ∥ ctr. Note that, similarly to before, the adversary
cannot retroactively change s after mining a block, because this will invalidate the
proof-of-work. This helps with freshness: If a block B is old and includes a pointer
s to an even older block, this s cannot be retroactively chnaged to point to a newer
block to make B appear fresh. The final proof-of-work algorithm illustrated in
Algorithm 11. accepts both s and x as parameters and tries to find a ctr that
satisfies the proof-of-work equation.

Algorithm 11 The mining algorithm for a block associated with multiple transac-
tions x and a previous blockid s.

1: function PoWH,T (s, x)
2: ctr

$← {0, 1}κ
3: while true do
4: B ← s ∥x ∥ ctr
5: if H(B) ≤ T then
6: return B
7: end if
8: ctr← ctr + 1
9: end while

10: end function

Because each block points to a previous block, the blocks form a chain. This
is known as the blockchain and is illustrated in Figure 4.8. The arrows follow the
direction of the pointers, pointing from one block to the block it refers to. While
the pointers have a right-to-left direction, the blockchain was produced from left-to-
right. From now on, we will draw blocks as simple squares, omitting the respective
transactions inside for brevity.

Figure 4.8: A chain of blocks. The blocks were mined from left to right.

4.10 Genesis
We’ve added pointers between blocks to ensure freshness, and each block attests
about its freshness by a pointer to a recent block. But what about the freshness of
the first block on the chain? That first block cannot have a pointer to a parent block.
How do we ensure its freshness? In particular, how do we prevent an adversary from
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having produced many blocks in secret prior to the blockchain protocol even being
announced, anticipating its announcement, perhaps in collusion with the creator of
the protocol? To prove the freshness of the first block, the first block contains a
reference which ties the theoretical and mathematical world of the blockchain with
real world events. The first block, known as the genesis block, or simply genesis,
contains in its metadata the headline of a recent newspaper describing impactful
and unpredictable world events. Because these data are committed into the proof-
of-work of the genesis block, similarly to the values s and ctr, they cannot be
retroactively changed without invalidating the proof-of-work. This is the way of the
protocol creator indicating there’s nothing up his sleeve, and that the genesis block
was produced after a certain point in time. This is an anchor in time and guards
against the fear of premining attacks, situations in which the protocol inventor is
adversarial and has mined blocks prior to making the protocol public. The genesis
block is denoted G. A blockchain beginning with the genesis block is illustrated in
Figure 4.9.

G

Figure 4.9: A blockchain beginning from genesis.

The Bitcoin genesis block was mined on January 3rd, 2009 and contains the
following quote:

The Times 03/Jan/2009 Chancellor on brink of second bailout for banks

The quote is both an anchor in time and a political message by Satoshi Nakamoto.
The frontpage of The Times newspaper of that day appears in Figure 4.10.

We will make all honest parties check that all blockchains begin with G to avoid
premining. The genesis block is hard-coded into the source code of each honest
party. By convention, we consider G to be an honestly generated block.

4.11 Mining
Honest parties constantly attempt to mine blocks by following the mining algorithm.
The steps that an honest miner follows are as follows:

1. Maintain a consistent local mempool x of transactions.

2. Attempt to mine a block B = s∥x∥ctr by finding a ctr that satisfies H(B) ≤ T .

3. If mining is successful, broadcast the newly created block B.

4. Otherwise, keep mining.

The honest parties keep mining even if their mempool is empty. This means
that the blockchain might consist even of empty blocks.
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Problems
4.1 When mining in Algorithm 11, an honest party begins their search at a value

of ctr which is initialized at a uniformly randomly chosen sample from {0, 1}κ.
After this, the honest party searches sequentially by incrementing ctr. Consider
the case when there is a constant number of parties, each of which is running
for a polynomial amount of time, and all of them are trying to mine with the
same s and x. Use a union bound to estimate whether the probability that any
two honest parties will use the same ctr when attempting to find proof-of-work
is negligible or not.

Further Reading
Proof-of-Work was invented long before blockchains, in 1992, by Cynthia Dwork
and Moni Naor in their seminal paper Pricing via Processing or Combatting Junk
Mail [13] published in CRYPTO ’92. Satoshi Nakamoto invented the blockchain [26]
by using proof-of-work as a building block.
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Figure 4.10: The genesis block contains metadata with a time anchor to real-world
events.

62



Chapter 5

The Chain

In the last chapter, we discussed the necessity for blocks as a mechanism to enforce
periods of silence so that double spends can be adequately separated in time. We
then linked blocks together into chains in order to ensure freshness so that an
adversary cannot retroactively bring blocks mined and withheld in the old past.
However, we left the notion of “freshness” and block validation undefined. In this
chapter, we will fill in all the missing details of how blocks and chains are verified.
By the end of this chapter, we will have a rudimentary, yet complete and secure,
blockchain protocol.

5.1 The Target
Previously, we designed the proof-of-work inequality H(B) ≤ T in order to create
rare events and periods of silence as a moderately hard version of the exponentially
hard hash preimage problem. In order to prevent double spends, we needed to
ensure that blocks are spaced ∆ apart. Let us now calculate the correct value of
T so that block production is spaced more than ∆ time apart. To do this, we
need to first find out when the proof-of-work inequality holds. If we start with a
freshly generated ctr and place it into B = s ∥ x ∥ ctr, what is the probability that
H(B) ≤ T? This question is not straightforward to answer, because the output of
a hash function may not be uniformly distributed (see also Problem 2.7).

In fact, not all collision resistant hash functions are suitable for proof-of-work.
We want to demand that, whenever the hash is queried with a fresh input, the
output is uniformly distributed in {0, 1}κ. This extra assumption is known as the
random oracle model and we will return to it in Chapter 11. Using the random oracle
model, we can calculate the probability that a particular nonce trial is successful:

p = Pr[H(B) ≤ T ] =
T

2κ

During the exhaustive search of proof-of-work, if a particular hash trial H(B)
is found to be H(B) ≤ T , we call that hash function query a successful query.
Otherwise, if H(B) > T , we call the query unsuccessful. The expected number of
queries needed until a successful query is found is 1

p = 2κ

T .
As protocol designers, we need to set T correctly so that blocks are produced

at a rate smaller than once per ∆. For this, we need to have an estimate of how
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fast the participating nodes on the network can compute hash queries. Let’s start
with some definitions. Suppose that a typical honest computer can process q ∈ N
computations of H during every unit of time. Let us also suppose that the total
number of computers mining on the network is n ∈ N and the adversary controls t ∈
N of them. Here, we are assuming that all computers have equal processing power,
but if there is some computer on the network that has more processing power, we
can just think about that powerful computer as a collection of smaller, less powerful
computers, each of which has q computational power. The model still works out.
We will call each of these computers a party. Each mining party will roughly
correspond to a node on the network, but in practice these are not necessarily the
same: A single network node can correspond to multiple parties if it is a powerful
computer. On the other hand, because our system is permissionless, a party may
spawn multiple nodes that all share the same computational power. Additionally,
even though we are saying that the adversary is in control of t adversarial parties,
we are still considering the situation where the adversary is a “puppet master”
who controls every adversarial party of the network by a central “master plan” A.
We say that such a party controlled by the adversary is adversarial, corrupt, or
malicious, and we will use these terms interchangably.

The total number of hash queries that can be executed in the unit of time is nq.
Since all parties are simultaneously trying to get a block all the time, the expected
block generation time is 1

pnq = 2κ

Tnq . If we want this value to be above ∆ we must
demand

2κ

Tnq
> ∆⇒ T <

2κ

nq∆
.

In a nutshell, the more computational power there is on the network, the larger
we must make the difficulty. Also, the larger the network delay, the larger we
must make the difficulty. We will use f to denote the honest block production rate
(expected blocks per unit of time), and η = 1

f the expected time between two blocks
being generated. For now, we’ll estimate that f ≃ (n − t)qp, but we will give a
more formal definition for f in Chapter 11.

As the designers of the protocol, we will make some reasonable estimations for
∆, n, t and q. Based on these, we will calculate the value T . For the time being,
we will fix T to be a constant that never changes. This model is called the static
difficulty model. We’ll revisit this assumption in Chapter 8.

5.2 The Arrow of Time
In the previous chapter, we decided to link blocks together into a chain in order
to ensure each block has freshness and cannot be brought back from the past. It
turns out that this natural and intuitive chain structure actually has many more
nice properties than just ensuring freshness, which we will explore over the next
few chapters.

In order to be able to speak about chains more precisely, let us introduce a bit
of notation. A chain C is a finite sequence of blocks C = (B0, B1, B2, . . . , Bn−1)
ordered chronologically. The chain length |C| is the number of blocks in the chain.
We address these blocks by their zero-based index, so C[0] is the first (and oldest)
block on the chain, C[1] is the second, and so on. The first block among a complete
chain is the genesis block, so C[0] = G. We use negative indexing to address blocks
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from the end of the chain, so C[−1] is the last (and most recent) block, C[−2] is
the penultimate block, and so on. The block C[−1] is called the tip. The index
of a block within its chain is called the block’s height, so genesis has height 0 and
the tip has height |C| − 1. The depth of a block within its chain is the distance
of a block from the tip. For example, the tip has depth 1, the block preceding
the tip has depth 2 and so on. It will also be useful to speak about chunks of a
chain, continuous portions of the chain. We’ll denote by C[i:j] the portion of the
chain starting at block with index i (inclusive) and ending at block with index j
(exclusive). For example, (B0, B1, B2)[0 : 2] = (B0, B1). These i and j can also be
negative, again meaning indexing from the end. Omitting i means starting from the
beginning, while omitting j means going until the end of the chain. For example
(B0, B1, B2, B3, B4, B5)[−2 :] = (B4, B5).

We have not yet specified how to actually verify a block, and what are the
conditions for accepting a block. How exactly do we determine if a block is fresh
or unfresh? Let us try the following strategy to see where it leads.

A fresh block must extend the most recent block we’ve seen. If we
receive a fresh block, we accept it. Otherwise we reject it as unfresh.

Having considered the simple ideas that don’t work for transaction ordering, this
strategy seems eerily fragile. Let us go over an example where it breaks. Consider
the successful queries illustrated in the timeline of Figure 5.1. In this timeline, the
successful queries are spaced apart more than ∆ by an appropriate choice of the
T parameter. Some of the queries happen to be honest (black solid diamonds),
whereas other queries happen to be adversarial (red hollow circles). The honest
party who performed the successful query 1 will mine a block on top of G, and
broadcast it to everyone. Let’s call this honest party party 1 and the block just
generated block 1. Since block 1 will reach the whole network by time ∆, everyone
will have adopted it prior to the next successful query. Honest party 2 will then
mine a block on top of 1 and broadcast it to everyone, and so on, until the adversary
gets the successful query 5. At this point, the adversary mines block 5 on top of
4, but can choose to selectively disclose it. The adversary does not disclose block 5
to party 6, but discloses it to party 7 at some time tA right before query 6 occurs.
Since tA and query 6 are less than ∆ apart, party 6 will not receive block 5 before
mining block 6, and so block 6 will extend block 4. At a later time tB , occurring
after query 6 but before query 7, party 6 receives block 5, but it is too late: He has
already mined block 6 and cannot go back and change it. On the contrary, party 7
has seen block 5 prior to block 6 and is made to falsely believe that party 6 wrongly
chose not to extend block 5. Party 7 rejects block 6 as unfresh and mines block 7
on top of block 5.

Δ time

1 2 3 4 5 6 7

tA tB

Δ

Figure 5.1: A series of successful honest (black solid diamonds) and adversarial (red
hollow circles) queries regularly spaced apart more than δ.

This scenario leads to the blocktree illustrated in Figure 5.2. Worse yet, now
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some parties who detected that 5 was broadcast late will accept 6 as valid, whereas
the parties who received 5 early will accept 7 as valid. While we were hoping that
the proof-of-work construction would give us a single chain as a global source of
truth, we have failed, and, again, we have honest views in disagreement.

G 1 2 3 4 5

6

7

Figure 5.2: A blocktree instead of a blockchain arising out of the timeline of fig-
ure 5.1.

There is a disagreement about what is fresh and what is unfresh. We need to
adopt a more robust measure of time. Towards this, let us reinspect the chain
structure we discovered in the previous chapter.

Because the hash of a block cannot be predicted prior to the proof-of-work actu-
ally taking place (otherwise proof-of-work would be solvable by a faster algorithm
than exhaustive search), the value s of the previd must be computed prior to the
value H(s ∥x ∥ ctr). In other words, the previd s must already be known when
mining for a new block that includes s as its previd. Blocks are mined in the order
they appear. The pointers between blocks in the chain are causality links. They
point backwards in time. The blockchain grows forward in time and defines an
arrow of time. When we observe a blockchain, we can deduce that all of its blocks
were mined one after the other in the order that we observe them. In fact, if we
have a blockchain consisting of a sequence of blocks, if we change the payload x in
an earlier block, this will cause the proof-of-work in that same block and all sub-
sequent blocks to become invalid: Changing the x of the block will cause its own
blockid to change and its proof-of-work to be invalidated. This, in turn, requires
changing the previd s of the next block to maintain the chain structure, causing its
proof-of-work to be invalidated, and so on and so forth for every subsequent block
on the chain, as illustrated in Figure 5.3. To change the contents of one block of the
chain, the adversary would have to go back and redo all the proof of work. Hence,
the adversary cannot detach a block from its parent and append it to a different
parent to make it appear newer than it is.

′
G

x → x′

s1→ s1′ s3→ s3′ s5→ s5′

s2→ s2 ′s4→ s4

Figure 5.3: Changing just one small part of a block’s content causes a cascading
effect invalidating the proof-of-work of the whole chain inheriting from that block.

A longer blockchain takes more time to generate, whereas a shorter blockchain
takes less time to generate (we will prove this relationship between blockchains and
time precisely in Chapter 13). Therefore, we can use the length of a blockchain to
estimate how much time it took to generate, and how fresh its tip is.

This allows a more objective comparison about which chain to adopt. Since a
longer chain takes more time to produce than a shorter chain, its tip is roughly
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the “freshest”. We now adopt the following rule for which chain to choose among
multiple candidate chains:

Longest Chain Rule. Among all chains on the network, adopt the
longest chain (the one with the most blocks) as your canonical chain.
If there are multiple competing chains of the same length, choose any
chain arbitrarily.

Using this rule, a node doesn’t have to stay online on the network all the time
to observe which block is fresh and which one isn’t. Additionally, two honest nodes
that have seen the same network messages, regardless of the order in which they
received them, agree on their verdict of which chain is best.

We can now summarize the honest miner’s rules, which every honest miner is
constantly running:

1. Maintain a local canonical chain C.

2. Keep mining on the canonical chain.

3. If mining is successful, broadcast the new block to the network, and update
the local canonical chain.

4. If not, keep mining.

5. In the meantime, when a new valid chain arrives on the network, check its
length, and update the local canonical chain if the newly arriving chain is
longer than the existing canonical chain.

The most common situation is for the canonical chain to be replaced by a new
chain that extends the previous chain by one more block. However, sometimes a
chain appears that is longer but does not extend the previous chain. In this case,
we say that the chain reorgs (reorganizes) and certain blocks are rolled back.

Once a party has adopted a canonical chain, reporting a ledger of transactions
to implement the read operation of a full node is straightforward and is depicted
in Algorithm 12. Given a chain C = (B0, B1, . . . , Bn−1), the ledger reported by the
honest party when the read functionality is invoked is the sequence of transactions
in the same order as they appear on the chain. Here, we use the notation B.x to
denote the x component of block B = s ∥ x ∥ ctr. First, the ledger is initialized to
be the empty sequence [ ]. The algorithm then traverses each block B of chain C in
chronological order (while we use the notation B ∈ C, remember that C is an ordered
sequence and not a set). The transactions of the genesis block B0 are appended to
the ledger, in the same order as they appear within the genesis block’s transaction
sequence B0.x (which, again, is a sequence and not a set of transactions); next,
the transactions of the block following genesis are appended; and so on, until the
transactions of the tip are appended.
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Algorithm 12 The naïve read rule.
1: function read(C)
2: L← [ ]
3: for B ∈ C do
4: for tx ∈ B.x do
5: L← L ∥ tx
6: end for
7: end for
8: return L
9: end function

As you can judge by the name of this rule, this is a rule which we plan to soon
revise (in Chapter 6).

5.3 The Stochastic Nature of Work
Despite adopting the Longest Chain Rule, the situation with successful queries is
far worse than we anticipated. So far, we have presented successful queries as being
spaced apart exactly 1

pnq , but mining is a stochastic process which will have irreg-
ularities. The value 1

pnq is just the expected block generation time, but sometimes
successful queries will be spaced apart more closely and sometimes sparsely, as il-
lustrated in Figure 5.4. While we attempted to space queries reasonably apart, it
can just so happen that certain queries are successful in close proximity (less than
∆ apart). This means that, even without the presence of an adversary, the honest
parties can happen to mine blocktrees and be in disagreement.

Δ time

1 2 3 4 5 6 7 8 9 10 11 15 16 17 1918
Δ Δ

Figure 5.4: The stochastic nature of work makes honest successful queries irregular.

In Figure 5.5, we illustrate a blocktree that can arise out of the timeline of queries
in Figure 5.4. Even though all successful queries were honest, the honest parties
who used the longest chain rule built a blocktree and not a single blockchain. At
the end of the execution, the honest parties are split between the canonical chains
they have adopted: Some parties have adopted the chain ending on block 17, some
have adopted the chain ending on block 18, and some have adopted the chain on
block 19, as their canonical chain. If these three blocks contain double spends, the
different honest parties could be reporting different ledgers. This happened even
though the adversary was not mining any blocks. This is a loss of safety.

Are we back to square one? Not quite. We’ll soon see that, with a few last
modifications to our protocol, we can soon achieve security. We’ll finish the protocol
design in the next chapter, and prove its security in Chapters 11-13. For the
moment, let us try to understand how the longest chain protocol works a little
more precisely.

Let’s go back to Figure 5.5. In this picture, we notice that there really is only one
longest chain in the blocktree, except with some extra blocks here and there. This
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Figure 5.5: A blocktree arising out of the timeline of honest-only queries of Fig-
ure 5.4.

longest chain begins from genesis and goes on until block 16. Here and there on the
sidelines of the longest chain, we see a few blocks popping up such as block 2 and
block 7. These smaller branches alongside the longest chain are called temporary
forks and can be one or more blocks long, but typically these temporary forks will
be quite short. We’ll explore the reason for this in the next chapter.

Our chain’s lifecycle begins at genesis, with every honest party mining on top
of it. When there is a single block mined by just one honest party, and that
block makes it to the doorstep of every other honest party before they’ve had the
opportunity to mine their own block, the chain grows for everyone. This is the usual
case. In rare occassions, two different honest parties will mine two different blocks
at approximately the same time. Because the one honest party has not received
the block of the other honest party while he is mining his own, both of these blocks
will extend the same parent, so we will have a temporary fork. We say that the
chains of honest parties have diverged. These two forks will now have the same
height, and so the honest population may be split among which one to adopt. If
it so happens that the honest parties again mine two different blocks at about the
same time across the different forks, these temporary forks will grow. However, as
soon as there is a block mined on any of the two temporary forks, and no other
block is mined in close temporal proximity to it, there will be one definitive longest
chain, and every honest party will adopt it. We say that the honest chains have
converged again.

We notice that, in the optimistic setting where no adversary is mining, the
honest parties converge on one chain whenever there is an honest successful query
separated ∆ from all other honest successful queries (it is also possible that honest
parties converge in other moments if they get lucky). Therefore, we call these
moments in time convergence opportunities:

Definition 19 (Convergence Opportunity (informal)). An honest successful query
is called a convergence opportunity if it is ∆ separated in time from all other honest
successful queries.

Notice that the definition of a convergence opportunity only requires that an
honest successful query is separated from other honest successful queries. It does
not concern itself with adversarial queries. It is possible that an adversary will
cause a divergence even during a convergence opportunity.

Convergence opportunities are events that are visible in God’s eye who has a full
and current global view of each and every party. The individual parties may not
be able to tell whether a successful query is also a convergence opportunity. The
hope is that, even though honest parties cannot detect convergence opportunities,
these will still happen behind the scenes and will lead to convergence. While this
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convergence will take place often, the honest parties will not be aware of whether
convergence has occurred, but this will not cause any issue.

5.4 The Honest Majority Assumption
Even though we used the longest chain rule to ensure that blocks from the long
past are not retroactively revived, an adversary with large mining power compared
to the honest parties can still mine in secret. Look at Figure 5.6. Here, the honest
parties mine sequentially on top of block 1 and produce block 2 and its descendants.
The adversary independently mines on top of block 1 and produces 2′ and its
descendants, which the adversary does not broadcast to the network yet. When
the adversary has accumulated a bunch of more blocks than the honest party, he
broadcasts the whole chain to the network. The honest parties adopt the newly
broadcasted adversarial chain, abandoning their own.

G 1 2

2′

Figure 5.6: An adversary with dishonest majority (top red chain) can outpace the
honest parties (bottom blue chain).

This situation is pretty bad. It causes a loss of safety, as some of the honest
parties have switched from their ledgers to the adversary’s ledger, causing disagree-
ment. It also causes a loss of liveness, because the adversary may choose not to
include any honest transactions. However, if the adversary only has a minority
of mining power, even though these attacks can start small, they cannot grow for
much longer, as the adversary will be left behind in the dust by the honest parties
who will be mining more quickly. We’ll explore these attacks much more deeply
in Chapter 7, and we’ll formalize them in Chapter 11. However, it should already
be clear that we must require that the adversary controls only a minority of the
compute of the network. We will call this the honest majority assumption.

Definition 20 (Honest Majority Assumption). The honest majority assumption
mandates that the adversary controls less compute than the honest parties:

t < n− t

Using the honest majority assumption, and with a small modification to the
way we read ledgers, in the next chapter we will intuitively argue that our protocol
is now secure.

5.5 Coinbase Transactions
Now that we have completed the design of our longest chain protocol, we have
finally solved the problem of how money is transferred in a publicly verifiable and
decentralized manner. However, we never tackled the problem of how money is
created in a decentralized manner. If there is no central authority to issue money,
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how can we create new money, and who receives any new money that is created?
With the invention of blocks, there is a natural choice for this. Since blocks are
generated in regular intervals, we can use the block to inject the money supply
with new money in a manner that maintains controlled scarcity. This is where the
coinbase transaction comes into play. Recall that a coinbase transaction has no
inputs and a single output with a certain value coming out of it, as illustrated in
Figure 5.7. It is the only type of transaction that does not respect the Conservation
Law. Our rule says that every block must have at most one coinbase transaction,
and that transaction must appear first in the list of transactions of the block, if at
all (different blockchain systems may have slightly different details on what rules
they enforce on the syntax of coinbase transactions). The public key in the output
of the coinbase transaction is freely chosen by the miner. Naturally, because this
is free money, the miner will typically make that public key be their own, so that
they can reap the benefits of mining.

Alice
950

Figure 5.7: A coinbase transaction paying Alice the amount of 950 units. The
coinbase has no inputs and a single output.

We now need to make a decision about how much money can appear in the out-
put of the coinbase transaction of each block. The value on the coinbase transaction
has two parts: A block reward and the transaction fees.

The block reward fr corresponds to money that is newly created. This money
comes out of thin air, and is injected into the system without coming from anywhere.
It is how new money is created. The block reward must follow an algorithmic,
prespecified rule that is hard-coded into the system. One simple way is to set a
fixed amount to be the limit of the block reward, and ensure every full node has
this amount hard-coded into its source code. For example, we can set the block
reward to simply be the constant fr = 50 units. During the validation of a coinbase
transaction, each client checks that this amount is respected. In case the coinbase
transaction deviates from this rule, the coinbase transaction is considered invalid,
and so is the block it is contained in. The decision on how the block reward is
algorithmically determined is called the macroeconomic policy of the chain. We’ll
have more to say about this in Chapter 8. Let’s observe what exactly is happening
with this construction. Instead of having an authority decide how much new money
is created, this decision is fixed upfront and known to everyone beforehand. And
instead of having an authority receive the newly created money and decide what to
do with it, we randomly allocate this new money to the lucky node who happened
to be the successful miner of the block.

The second part of the value of the coinbase transaction output consists of the
transaction fees. Revisiting the Weak Conservation Law, remember that it’s possi-
ble that some transactions can have more input value than output value, because
we only demanded that ∑

i∈tx.ins
i.v ≥

∑
o∈tx.outs

o.v .
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If this inequality is strict, then there is more input value than output value,
as illustrated in Figure 5.9. That difference in value is not lost, but the miner is
allowed to reclaim it as part of their coinbase value.

Alice
7

Bob

10

Figure 5.8: A transaction with an input of 10 and an output of 7 pays a fee of 3
units that go to the coinbase output.

Overall, the coinbase transaction is allowed to include up to a value which is
the sum of the block reward plus the transaction fees of all the transactions. The
total amount of fees incurred in a block B will be

ff (B) =
∑

tx∈B.x
tx non-coinbase

∑
i∈tx.ins

i.v −
∑

o∈tx.outs
o.v .

The coinbase output value is allowed to be up to the total ft = fr + ff (B)
which includes both the reward and the fees. Typically, the miner will claim the
maximum allowed value in the coinbase. In case the miner chooses not to claim the
full value, that money is burned and does not belong to anyone.

To verify a coinbase transaction, we follow these steps:

1. Check that is is the only one in that block.

2. Check that it is the first transaction in the block.

3. Check that it has no input and exactly one output.

4. Check that its output has a value which is less than or equal to the sum of
the block reward and the difference between the input and output amounts
of all other transactions in the block.

5. Check that the coinbase is not spent in the same block.

The last condition is known as the coinbase maturation condition, and sometimes
a longer waiting time than one block is required.

One more technical detail is required in the data that is included in the coinbase
transaction. Because the miner in two different blocks can be the same, and the
value ft in two different blocks may also be the same, all the data of two different
coinbase transactions can be identical. If we didn’t take any action to prevent this,
their txid would be identical as well. However, we would still like to distinguish
the two different coinbase transactions of different blocks, so that they can be
spent independently. It is therefore important to include some extra metadata to
distinguish one coinbase transaction from another. One such piece of metadata that
can be included is the block height of the block the coinbase transaction is included
in.

With coinbase and regular transactions, we’ve concluded both the publicly ver-
ifiable creation and transfer of money in a way that respects scarcity, completing
our monetary design.
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5.6 Block Validation
So far, we described how blocks are mined, but we have not given the block val-
idation algorithm. This algorithm is straightforward and consists of the following
steps. Whenever an incoming block B = s ∥ x ∥ ctr arrives:

1. Validate the proof-of-work H(B) ≤ T .

2. Use s to locate its parent block and ensure it is valid recursively.

3. Validate the transactions x.

To avoid spam, only valid blocks are gossiped by honest nodes. As it is moder-
ately difficult to create proof-of-work, this is validated first to avoid spam attacks.
In case s points to a block that is not known to the node, this is downloaded and
validated recursively. Similarly if x refers to any transactions that are unknown,
these are downloaded from the network to validate the block.

The validation of transactions x in a block works as follows. For each block B,
we remember a UTXO set which we associate with the state st(B) of the world
after the particular block has been adopted. We also define a genesis state st0, the
state of the world before any transaction ever took place. The genesis state, which
is where the UTXO set begins its lifetime, is defined to be the empty set.

To validate the transactions in a block B = s ∥ x ∥ ctr, we take the state stB′

associated with its parent block B′ whose blockid is s = H(B′), or st0 if B = G. We
then attempt to apply each of the transactions in the block, in the order they are
defined in x, updating the UTXO set as we go along by consuming and producing
elements in the set, and validating every transaction along the way, in the manner
we already discussed in Chapter 3. If at any point the transaction validation fails,
the whole block is rejected, even if just one transaction was invalid. If all transaction
validations succeeded, we assign the state stB after our block to be the UTXO set
we arrived at after this process is completed. This is illustrated in Figure ??. In
this example, B.x = (tx1, tx2, tx3, tx4).

stB′ 

B

stB 

tx1 tx2 tx3 tx4

st1 st2 st3

Figure 5.9: Validating the x part of block B. The intermediate states are shown
as purple cylinders. The state stB′ comes from a block which has already been
validated (shown partially on the left).

While we will sometimes say that chains are exchanged on the network, it is
really blocks that are sent over the network. Due to the fact that each block contains
a reference to its parent, a block uniquely identifies the chain of which it is a tip.
When a party wishes to send a chain to another party, it is sufficient that the tip
is sent over. The other party can then request the ancestor blocks if he doesn’t
already have them. In practical protocols, sometimes these requests for objects are
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bundled together in batches to improve communication complexity. For example,
all the transactions of one block can be downloaded in one go instead of requesting
each of them independently. Validating a chain equates to validating its tip, as this
requires validating the parent block recursively. The genesis block is hard-coded
into every full node and is considered valid by definition. This is where the recursion
stops.

5.7 Maintaining the Mempool
As we have already discussed in the previous chapter, each node maintains a mem-
pool with transactions in limbo, waiting to be confirmed into a block. A mempool
state is maintained pertaining to the current mempool. This state is where newly
arriving unconfirmed transactions are checked against for validity. When a new
transaction arrives from the network, after it is validated, this mempool state is
updated to reflect the consumption and creation of elements in the UTXO set. If
the miner is able to get a block, the mempool transactions make it into the block
and the mempool is emptied. At this point, the mempool state becomes equal to
the state of the newly mined block. However, if a different party successfully mines
a block, we have to be a little more careful about updating our mempool and the
mempool state, as our mempool may not exactly match the transactions that were
received in the newly arriving block.

Consider the case where a party P1 has some chain C and party P2 mines a new
block B on top of C. As usual, the block B is validated with respect to the state
st(C) of C[−1]. After validation, we have calculated the state st(B) of B. Now, P1

calculates the new mempool x′ as follows. He first sets the mempool state to be
equal to the state st(B) of the latest block. He looks at the transactions x in his
old mempool and processes them one by one. He attempts to apply each of these
transactions tx ∈ x in the order that they appeared in his old mempool on top of
st(B), updating the mempool state every time a transaction is successfully applied.
If a transaction from the old mempool cannot be applied, that transaction is thrown
away and the mempool state remains unaffected. The transactions that are applied
successfully make it to the new mempool. This process is like pretending that each
of the old mempool transactions appeared on the network in order after block B was
processed. If block B contains a transaction that was in the old mempool (which
will typically be the case), then this transaction has already been applied in st(B),
and so will not make it into the new mempool, because it is spending already spent
outputs. If block B contains a transaction that is conflicting with a transaction in
the old mempool, then the transaction in the old mempool will also be thrown out,
because it is conflicting with the transaction in B that has already been applied
to st(B). As such, if two mutually double spending transactions appear in a block
and in the mempool, the transaction in the block takes precedence.

The situation becomes slightly more complicated when there is a reorg. In that
case, the state is rolled back to after the latest common ancestor between the old
canonical chain and the new reorged chain, and state transitions are applied from
that point onwards. As for the new mempool, it is reconstructed by attempting to
apply first all the transactions in the abandoned fork, and then the transactions in
the old mempool.

This algorithm will be made clearer with an example. Consider the situation
illustrated in Figure 5.10, and suppose our party has adopted the chain whose tip
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is B′
2 (bottom) and has a mempool of x′. Suddenly, block B3 arrives. The party

downloads the chunk (B1, B2, B3) and validates it. As before, this validation begins
by looking at the state of the latest common ancestor B. This has the effect that
all the transactions in B′

1 and B′
2 are undone prior to applying the transactions in

B1. First, the transactions in B1 are applied and st(B1) is calculated. Then B2

is applied and st(B2) is calculated. Lastly, B3 is applied and st(B3) is calculated.
If at any point a transaction cannot be applied, the whole block containing it is
rejected.

Now suppose that the newly arriving chain was valid. Since B3 has a higher
height than B′

2, the chain ending in B3 is adopted by the longest chain rule. At
this time, the party wants to compute his new mempool x. This is done as follows.
The party begins by setting the mempool state to st(B3). First, all the transactions
B′

1.x are trialed for placement into the new mempool in the same order they appear
within B′

1.x. Similarly, the transactions in B′
2.x are trialed for placement into

the new mempool. Lastly, the transactions in the old mempool x′ are trialed for
placement into x. Every time a transaction can be applied successfully, it is added
to the new mempool, and the mempool state is updated. In case a transaction
is unapplicable, the transaction is thrown away and the mempool state remains
unaffected.

B

B1 B2 B3

B1 B2′ ′ 

x

x'

Figure 5.10: The state and mempool calculation in the case of a reorg. Ancestry
relations are shown in solid arrows, whereas state updates are shown in dashed
arrows. Blocks are depicted as blue solid bloxes; states are depicted as purple
cylinders; mempools are depicted as dashed green boxes.

This has the effect that, after a reorg, between any transactions that have a
double spend in both the abandoned fork and the newly adopted chain, the trans-
action in the new chain takes precedence, whereas the double spend within the
abandoned fork is also abandoned (and is not even placed in the new mempool).
This illustrates why reorgs can be dangerous: Money that is already considered
confirmed can be rolled back, and a double spend can later become confirmed in its
stead.

5.8 Problems
TBD
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5.9 Further Reading
TBD
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Chapter 6

Chain Virtues

Now that we have developed the longest chain protocol and understand what con-
stitutes a chain, let’s familiarize ourselves with executions of this protocol, in honest
and adversarial settings, by looking at the combinatorial properties of chains.

6.1 Transactions – Blocks
Before we get into the combinatorial properties of chains, let us spend a moment
comparing transactions (Chapter 3) and blocks (Chapters 4 and 5), to ensure that
we don’t confuse the two and to built a high-level mental model of the previous
couple of chapters.

Recall from Chapter 3 that chain of transactions is what constitutes a coin
(although this is not a formal notion, since coin provenance may not be uniquely
determinable because coins can be joined and split through transactions). Anyone
can create a transaction spending their own money instantaneously, because they
can easily create a signature. Long chains of such transactions can be created
rapidly from a low-end device, such as a mobile phone, with no significant mining
power required. On the other hand, no one can create a transaction that spends
someone else’s money, because they don’t hold the respective private key, no matter
how much computational power they have (within the bounds of our polynomial
world). A chain of transaction conveys no information about time taken.

As for blocks, creating them does not require producing any signatures, but
does require having a lot of computational power, and cannot be performed on a
laptop or mobile phone.

A summary comparing blocks and transactions is shown in Table . Time to
create honest describes the time needed to create a transaction spending my own
money (including double spending it) and the time needed for an honest party to
mine an honest block. Time to create adversarial describes the time needed to
create a transaction spending someone else’s money and the time needed for an
adversarial party to mine an adversarial block (for example containing a double
spend). The last few rows summarize the inductive process of validating a trans-
action and validating a block. For transaction validation, the inductive base is the
coinbase transaction, where money is generated and the Conservation Law does not
need to be verified, and neither do they need signatures. The inductive hypothesis
there is that we have a valid UTXO set, and the inductive step involves updating
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Transaction Block
Time to create honest Instantaneous Moderately hard

Time to create adversarial Exponential Moderately hard
Inductive base Coinbase G

Inductive hypothesis Outpoint UTXO Previous blockid (s)

Inductive step
Update UTXO set

Check σ
Conservation

H(B) ≤ T
Validate x

Table 6.1: A high-level comparison of the nature of transactions and blocks.

the UTXO set by consuming and producing elements, checking transaction signa-
tures, and verifying the law of conservation. For block validation, the inductive
base is the genesis block, whose previd does not need to be checked. The inductive
hypothesis is that the previous chain up to s has been validated, and the inductive
step involves checking the proof-of-work equation and validating the transactions
within.

Given this table, we can observe what protects a transaction in transit from
being altered. Imagine the adversary sitting in the middle of a gossip path on the
network. This adversary relays transactions and can modify them as they travel
from one end of the network to the other. If the adversary attempts to change
a transaction’s data (such as the recipient), she will fail. The reason of failure is
different for a normal transaction and a coinbase transaction. When it comes to a
normal transaction, the polynomial adversary who attempts to change the recipient
will fail because of the existential unforgeability of the signature scheme. When it
comes to a coinbase transaction, these transactions are not signed, as they do not
have any inputs. However, because the coinbase transaction is always associated
with a block, changing the coinbase transaction invalidates the proof-of-work of the
block the coinbase transaction is included in. A coinbase transaction is never valid
unless it accompanies a block. The adversary would therefore need to solve the
proof-of-work puzzle from scratch in order to usurp this payment. While this is not
impossible, it is moderately difficult.

6.2 Safety, Revisited
When we gave the first intuitive definition of ledger safety in Definition 15, we
mandated that all honest parties agree exactly on their ledgers. Now that we’ve
talked about network delays and arranged transactions into blocks, we see that this
will be impossible to achieve. In the best case scenario, we have a chain that is
growing without any forks. Still, in this case, if two honest parties P1, P2 both have
a chain C, whenever P1 mines a block B on top of C, it will take ∆ time until P2

receives this block and updates his ledger. Remember that the reported ledger of a
party only includes the transactions that have been confirmed into blocks.

We need to revise our safety definition to account for the fact that there can be
discrepancies. We will accept that ledgers of honest parties may disagree. However,
we want the ledgers to be consistent with one another: If one honest party has
reported a transaction at position i in his ledger, then every other honest party
must either have that same transaction at position i, or their ledger must be shorter
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than i, indicating that the party has not yet decided which transaction to place at
that location. However, it is imperative that two different honest parties do not
have different transactions at the same location. In different words, we want the
ledger of honest party P1 and honest party P2 to be prefixes of one another, even
if they are observed at different points in time. Let’s revise our ledger safety virtue
to state it formally.

Definition 21 (Safety). A protocol is safe if for any two honest parties P1, P2 and
any two times r1, r2, it holds that either LP1

r1 ≼ LP2
r2 or LP2

r2 ≼ LP1
r1 .

The notation A ≼ B between two finite sequences A and B means that B[:|A|] =
A. An example of safe ledgers is illustrated in Figure 6.1. The image shows the
ledgers reported by all honest parties at potentially different points in time. The
same transaction is illustrated as a circle of the same color on different ledgers. Not
all parties have seen all transactions yet: Party P2 has seen more transactions than
any other party, while P5 has seen the fewest. At position 8, only P2 has seen the
white transaction, and every other party has not. However, if a transaction ever
appears in position 8 of any other honest party (illustrated as a dashed-line ghost
transaction), it will be the same exact transaction that party P2 has seen at that
position.

P1L

P2L
P3L
P4L
P5L

0 1 2 3 4 5 6 7 8 9

Figure 6.1: A god’s eye view of the safe ledgers of various honest parties at various
moments in time.

Thinking back to the UTXO model, safety means that the transaction graph
of one party is outdated, but not inconsistent, as compared to the other party. In
particular, if one party has confirmed a transaction tx, then the other party cannot
have confirmed, and can never confirm, a transaction tx′ which is a double spend
of tx. Let’s try to understand why.

Lemma 5 (Safe ⇒ No double spend (informal)). In a safe protocol that ensures
transaction validity locally, two honest parties can never confirm two conflicting
transactions.

Proof. Suppose, towards a contradiction, that party P1 at time r1 has confirmed
tx. This means that tx appears in P1’s ledger LP1

r1 at time r1, and let’s call i the
position of the transaction in the ledger: tx = LP1

r1 [i]. Additionally, party P2 at
time r2 has confirmed tx′, a conflicting transaction to tx. Similarly, let j be the
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index: tx′ = LP2
r2 [j]. Now, if i = j, then this means that tx = tx′, which is a

contradiction since these are conflicting. If i < j, then by safety this means that
LP2
r2 [i] = LP1

r1 [i] = tx. But then, party P2 has included in his ledger both tx at
position i and tx′ at position j. This is a contradiction, because the honest party
validates tx′ before accepting it. Therefore, the two parties cannot have accepted
conflicting transactions.

This is a good sanity check that our definition of safety makes sense. Is this
revised and precise, yet weaker, notion of ledger safety achieved by our longest chain
construction? Not quite. The problem is that, as we saw in the previous chapter,
the chain may have temporary forks even when no adversary is mining. Whenever
the chain reorgs, there is a potential for safety loss. Consider the case illustrated
in Figure 6.2. Imagine that honest party P1 had initially adopted the chain whose
tip is block 6 and contains the top (white) transaction tx. In the meantime party
P2, who has not seen block 6 yet, is still mining on top of block 4. If party P2

successfully mines block 5, he can include a double spending transaction in it, the
bottom (black) transaction tx′, conflicting with tx. Now the two chains at blocks
5 and 6 are at a tie. The tie will be broken when the next proof-of-work is found
(block 7) and one branch becomes longer; the nodes that were working on the other
(block 6) branch will then switch to the longer one. If we now compare the ledger
reported by party P1 when he had adopted block 6 and the ledger reported by
party P2 when he had block 7, we see that the ledgers obtained by reading these
two chains are mutually unsafe.

G 1 2 3 4 5

6

7

Figure 6.2: A chain reorg during a temporary fork causes a safety loss.

We will have to revise our reading rule to account for these temporary forks.

6.3 Honest Convergence
We now argue that, in a correctly parametrized system, temporary forks will gen-
erally be short. Let us initially analyze this claim in the setting where every miner
is honest.

G
P1
P2

G
P1
P2

B1 G

P1

P2

B1

B2

B2

′

G

P1

P2

B1

B2

B2

′ B3

B3

′

G B1

B2

B2

′ B3

B3

′ B3
P1
P2

Figure 6.3: The timeline of two honest parties P1 and P2 mining in a way that
causes the honest population to temporarily split between two factions.
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Before we give a proof of this, let us think through an example of chain diver-
gence and convergence. It is illustrated in Figure 6.3. Initially, all honest parties
are mining on top of genesis G. If it happens that an honest party gets a block B1,
and broadcasts it to the rest of the network, this block will arrive at the doorstep
of every other honest party within time ∆. If no other block was mined during that
time, now all honest parties will switch to B1. Convergence is maintained. This
can continue happening, and the chain will keep growing, with all parties agreeing
on one tip (with potentially a small delay). Now, the divergence case can happen
when two honest parties mine a block almost simultaneously: First, one honest
party mines a block B2 on top of block B1 and broadcasts it to the network. But
before ∆ time has elapsed, a second honest party mines block B′

2. The block B′
2

will also be on top of block B1, as the second party has not received B2 yet. At
this point, two different chains, with tips B2 and B′

2 respectively, exist and have
the same length. Now the honest mining power is split into two factions: Some
honest nodes have seen B2 first, whereas other honest nodes have seen B′

2 first, so
some honest nodes are trying to extend B2 and some others are trying to extend
B′

2. These factions may hold different, or similar, portions of compute. Now it’s
possible that an honest party mines another block B3 extending B2. The party
broadcasts it to the network, but, before ∆ time has elapsed, another party, who
was mining on top of B′

2, also mines block B′
3 which extends B′

2. Again the honest
parties are split between two different chains of the same length. This situation can
continue. At some point, an honest party will mine a block B and broadcast it to
the network, but no other block will be mined within ∆ time. At this point, every
honest party will switch to block B. This is the convergence opportunity.

The idea is that, if we choose T appropriately, then convergence opportunities
will happen regularly. Once a convergence opportunity happens, if there is no
adversarial miner, the honest parties will converge into one chain.

Lemma 6 (Honest Convergence). In a setting where only honest parties are mining,
exactly ∆ time after every convergence opportunity, all honest parties will hold the
same chain.

Proof. Consider an arbitrary convergence opportunity producing block B occurring
at time r. Since the convergence opportunity is ∆ separated from every preceding
successful query, and all successful queries are honest and broadcast to the network,
all honest parties will have seen all the blocks produced so far (because they all
happen prior to r−∆ and it takes at most ∆ time to receive the message containing
those blocks). Therefore, the honest party who mined B will be mining on top of
the longest chain among all. This means that, at time r, the block B has a height
larger than any other block. Because the miner is honest, he broadcasts B, and it
is received by all honest parties within ∆ time. Since the convergence opportunity
is ∆ separated from every succeeding successful query, no other blocks are mined or
during the time interval r . . . r+∆. At time r+∆, every honest party has received
B and adopted it since it is the longest chain. At this point, all the honest parties
agree on their chains.

In other words, convergence opportunities really do lead to convergence in honest
executions. But will convergence opportunities happen often, as we are hoping?
This depends on the choice of parameter T , which affects p = T

2κ , and it should be
tuned based on our best guess for n, q,∆ we have for the network. Let us visualize
the effect that the expected block production rate nqp (if all n parties are actively
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Figure 6.4: The relationship between the expected block production rate nqp and
the density of convergence opportunities.

mining), of which we can tweak p, has on the density of convergence opportunities
in the unit of time. Their relationship is visualized in Figure 6.4. As you can
see in this graph, there’s a sweet spot for the expected block production rate that
maximizes convergence opportunities. If we make block production rate too slow
(left side of the plot), convergence opportunity density in the unit of time drops.
The reason is that, while almost all successful queries are convergence opportunities,
they are very rare in time. On the other hand, if we make block production rate too
quick (right side of the plot), while successful queries are dense in time, convergence
opportunities are rare, because successful queries clash with one another and there
is no sufficient ∆ separation between them. It is our task to design a system that
always remains within the realm of good density of convergence opportunities. A
system that produces blocks very fast may appear to have a high throughput of
“transactions per second”, but this misconfiguration can be leading to insecurity,
because throughput has been increased to the detriment of convergence opportunity
density. Any claims of blockchain performance must always be accompanied by
how the parametrization that achieves that performance affects the security of the
network.

6.4 Common Prefix
Under a correct parametrization of the system, we have now developed some in-
tuition that temporary forks will be short, at least as long as everyone is honest.
These forks may develop some length, but soon enough, a convergence opportu-
nity will arise. At that point, all forks apart from one will be abandoned, and the
honest parties will convergence on one chain. It takes time to mine a temporary
fork of longer length. Because convergence opportunities will occur often (we will
calculate precisely how often in Chapter 12), there is not enough time to build long
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temporary forks. Our blocktrees will look roughly like Figure 6.5.

G

Figure 6.5: An honest execution with some short temporary forks.

We will now define a parameter k ∈ N that specifies our belief of how long these
temporary forks can get. Our hope is that there will be no temporary fork longer
than k. If this is respected, we will be able to ensure safety. We call this virtue of
chains the Common Prefix virtue.

Definition 22 (Common Prefix). A system is said to satisfy Common Prefix with
parameter k ∈ N if for all honest parties P1, P2 and for all times r1 ≤ r2, the chains
adopted by the honest parties satisfy the property that

CP1
r1 [:− k] ⪯ CP2

r2 .

This property is telling us that temporary forks do not extend beyond k blocks
long. For example, the Common Prefix virtue holds in Figure 6.5 with parameter
k = 3, because temporary forks are at most 3 blocks long. The precise statement
of the virtue states that, if we take the chains adopted by two honest parties at the
same point in time, and we chop off k blocks from the end of the chain of the chain
of one party, we get a prefix of the chain of the other party. In other words, the two
honest parties’ chains share a long common prefix, and their different suffixes can
only be up to k blocks long. This further holds if we take chains of different parties
at different points in time. In that case, we have to make sure we chop off blocks
from the old chain to find that it is a prefix of the newer chain. The property also
applies when P1 = P2, in which case it is telling us that a particular honest party
cannot perform chain reorgs more than k blocks deep.

If this virtue holds, and we can know a k parameter that bounds all of our
temporary forks, we can modify the read functionality to achieve safety. Instead of
reporting as confirmed the transactions that are in our adopted chain C, we report
as confirmed the transactions that are within C[: − k], our chain with the last k
blocks chopped off. If the Common Prefix virtue holds, we know that the blocks in
C[:− k] will never be abandoned in the future.

Our new, and final, confirmation rule, is illustrated in Algorithm 13. Compare
this rule to Algorithm 12 of the previous chapter. The only difference is that we
have replaced C with C[: − k]. The portion C[: − k] is called the stable part of the
chain, because we are assured it will not change.
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Algorithm 13 The stable read rule.
1: function readk(C)
2: L← [ ]
3: for B ∈ C[:− k] do
4: for tx ∈ B.x do
5: L← L ∥ tx
6: end for
7: end for
8: return L
9: end function

We have finally achieved safety. This is captured in the following theorem, whose
proof we will complete in Chapter 12.

Theorem 7 (Common Prefix ⇒ Safety (informal)). If the blocktree satisfies Com-
mon Prefix with parameter k, then the longest chain protocol with the k-confirmation
rule is safe.

Note the effect of k on the protocol. If we make k too small, then we risk
Common Prefix being violated, and safety becoming jeopardized. If we make k
too large, then liveness will deteriorate. Similarly to how we must tune the T
parameter appropriately to balance safety and liveness, so we must also tune the
Common Prefix parameter k.

With this small change to the implementation of read, our protocol is finally
complete. We have created a secure cryptocurrency. The rest of this book will be
devoted to studying the various properties of our construction, augmenting it so
that it remains secure in different models, and optimizing it. However, the central
construction is done.

6.5 The Nakamoto Race
We now bring Eve, our double spending adversary, back into the picture. Eve has
picked up her game. Instead of stealing a cup of coffee, she’s now attempting to
steal a brand new car! However, she’s now up against our k-confirmation protocol
and must work a lot harder than before. The attack is pictured in Figure 6.6. Ini-
tially, all parties have converged on some block B. Eve first creates two conflicting
transactions tx (the white transaction on the bottom chain) and tx′ (the black trans-
action on the top chain). In this case tx is paying for the brand new car, whereas tx′
is spending the same output and handing the money back to herself. She broadcasts
tx to the network, hoping that it will become confirmed by the honest parties and
observed by the car dealer so that she can be handed the car. The honest parties
receive tx from the network and faithfully include it into their mempool. At this
point, Eve starts secretly mining on her own on the top (red) fork, while the honest
parties are mining on the bottom blue fork. The honest parties do not mine on top
of adversarial blocks, because Eve does not broadcast these blocks to the network.
Eventually, the honest parties mine a block containing tx (the block on the lower
fork containing the white transaction). But the car dealer will not see tx marked
as confirmed in his wallet before it is buried under k blocks, so Eve must wait. Eve
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allows the honest parties to keep mining on the bottom chain until k blocks have
been mined on top of the transaction and the transaction appears as confirmed.
That’s when the car dealer hands over the car to Eve. She takes the car and drives
away. In the meantime, Eve has been mining on the top fork during for all this
time. If at this time she has managed to create a longer chain than what the honest
parties have already adopted, she reveal this chain to the network by broadcasting
it. Then, every honest party will reorg their chains and switch to Eve’s chain. She
will take her money back, and she will have gotten away with the car.

G

k blocks

B

Figure 6.6: The Nakamoto Race.

To see when this attack is successful, we argue as follows. As soon as block
B was found and broadcast to the network at some time r, a race began between
the honest parties and the adversary: the so-called Nakamoto Race. This race
concludes as soon as the honest parties have mined k + 1 blocks on the bottom
fork. It is pointless for Eve to broadcast her top fork if the bottom fork does not
have k+1 blocks in it, because this will simply leave her car-purchasing transaction
unconfirmed and Eve carless. Because blockchains take time to produce, it will take
time to mine these k blocks. In order for Eve to win she must have mined more
blocks than the honest parties within that time window. Whether she is successful
in doing this depends on whether she has more mining power than the honest parties
or not. If Eve has less mining power than the honest parties (t < n − t), then the
picture looks somewhat like Figure 6.7. Eve has some successful queries (labelled
Z at the bottom), but the density of these successful queries in time is smaller than
the density of the honest parties’ successful queries (labelled X at the top). While
Eve can get lucky for a couple of blocks (in the picture, she gets two successful
queries before the honest parties have mined anything at all), given enough time,
the honest parties will get more blocks than Eve. If we choose k to be large enough,
we can make this time window long enough so that the honest parties will have
more successful queries than Eve, and Eve cannot win the race.

If Eve is left behind the honest parties after k + 1 honest blocks have been
mined, it does not make much sense for her to try and catch up, because she’s in an
even worse situation than she was when she started. Not only must she mine more
blocks than the honest parties from now on while they are still mining, but she
must also mine some extra blocks to make up lost ground. This gives an intuitive
argument of why a minority adversary cannot break k Common Prefix.

On the other hand, if Eve has the upper hand (t > n− t), then the picture looks
quite differently. The longer we wait, the longer the adversarial fork will become,
and it will certainly overtake the honest fork. There is no hope if the adversary has
more mining power than the honest parties. This reaffirms our requirement for the
honest majority assumption.

However, this picture is slightly incomplete. While we have argued that Eve will
mine fewer blocks than the honest parties within the window of time in question, any
honestly successful queries that are not convergence opportunities may be wasted
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Figure 6.7: Honest vs adversarially successful queries with a minority adversary.

into temporary forks. On the contrary, because Eve is a puppetmaster adversary,
if she plays her hand right, her queries are coordinated and always lead to one
consistent chain without forks. Therefore, it is not the honest successful queries we
should be comparing against the adversarially successful queries. Instead, we should
be comparing the convergence opportunities against the adversarially successful
queries. The full picture is illustrated in Figure 6.8. As you can see, even though
the honestly successful queries (labelled X at the top) might be more dense than the
adversarially successful queries (labelled Z at the bottom) due to honest majority
(t < n− t), it is still possible that the convergence opportunities (labelled Y in the
middle) are fewer than the adversarially successful queries. In order for the honest
parties to win the Nakamoto Race, honest majority is not enough! In addition to
honest majority, the blockchain must be correctly configured (with an appropriately
chosen T ) so that the convergence opportunities are denser than the adversarial
successes. Of course, because convergence opportunities are always sparser than
successful queries (every convergence opportunity is a successful query, but not
vice versa), if honest majority does not hold, then there is no hope that convergence
opportunities are denser than adversarial successes.

time

time

honest successful queries (X )

adversarially successful queries (Z )

time

convergence opportunities (Y )

Figure 6.8: Convergence opportunities vs adversarial queries with honest majority
in a misconfigured blockchain.
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6.6 The Fan-Out
We just observed that honest majority is not enough for our system to be functional.
It is not the honestly successful queries that we must be comparing against adver-
sarially successful queries; rather, it is the convergence opportunities that we must
be comparing against adversarially successful queries. A misconfigured system, in
which the honest parties have more successful queries than the adversary, but the
adversary has more successful queries than the honest parties have convergence
opportunities, can lead to a situation of a fan-out.

G

Figure 6.9: A misconfigured blockchain can be subject to fan-outs, even under
honest majority.

One such situation is illustrated in Figure 6.9. This system has a target T that
is too easy, and so blocks are produced with high probability p, more quickly than
we want. As such, the blocktree looks nothing like a blockchain. The honest parties
mine the various blue forks on top. The adversary mines the red fork at the bottom,
in secret. Even though the adversary has only expended 8 successful queries to build
her chain, the honest parties have expended 25 successful queries into building
their fan-out structure, whose longest chain is shorter than the adversarially mined
chain. The reason why this situation has occurred is because none of the honest
successful queries were convergence opportunities. Because the minority adversary
can concentrate her mining power into building one chain and, contrary to the
honest parties, is not subject to the delay ∆ (remember that we assume she controls
all of her minions from one central puppetmaster), she can win the race against the
honest parties even though they control the majority of compute. Because all but
one of the temporary forks among the honestly mined ones will eventually be thrown
out when a convergence opportunity occurs, all this honest mining power is going
to waste.

6.7 Chain Quality and Chain Growth
We spoke about how Common Prefix gives rise to safety. Just having our chains
have common prefix does not give liveness, however. It is possible that the chains
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have simply stopped growing, and no new transactions are ever making it in. In
order for liveness to hold, we need honest transactions to make it into the stable
chains of honest parties. Towards this, we will hope our chains will have two more
virtues.

On the one hand, we want honest chains to grow. If chains do not grow at all,
then there is no hope of new transactions making it in. As long as our chain grows
at a positive rate, however, we will have some liveness. The rate at which the chain
of an honest party grows over a period of time if the chain velocity.

Definition 23 (Chain Velocity). Consider an honest party and his chain C1, C2 at
times r1 < r2 respectively. We say the chain has grown with a velocity τ = |C2|−|C1|

|Cr2
|−|Cr1

|
between those times.

In order to achieve liveness, we will hope that our chain has chain growth: Given
enough time, the chain grows with a minimum velocity τ .

On the other hand, just because the chain has grown does not mean that any
honest transactions are getting confirmed: If the chain has only grown by adver-
sarially mined blocks, it is possible that the adversary has simply been ignoring
the honestly generated transactions. In order to get ledger liveness, we hope to
occassionally see an honestly mined block in every sufficiently long chain. We call
this chain quality.

Definition 24 (Chain Quality). Consider the chunk C[i:j] of an honest party’s
adopted chain C. We say that the chunk has chain quality µ = z

|C[i:j]| , where z is
the number of honest blocks in C[i:j].

In other words, the chain quality metric defines the proportion of honest blocks
within an honestly adopted chain. The chain quality virtue demands that sufficient
long chain chunks of honest parties have a minimum quality µ. An example is
illustrated in Figure 6.10. This is an honestly adopted chain C which contains both
honestly and adversarially generated blocks. Blocks 1, 2, 5, 7, 8 are adversarially
generated, and blocks G, 3, 4, 6 are honestly generated. This chain has quality µ = 4

9 .
If we just focus on the chunk C[3:6], the quality of this chunk is µ = 2

3 .

G 1 2 5 7 83 4 6

Figure 6.10: An honesty adopted chain with both honestly and adversarially gen-
erated blocks. Adversarial blocks are numbered 1, 2, 5, 7, 8 and shown in red.

Liveness follows from chain growth and chain quality. Liveness mandates that an
honestly generated transaction is confirmed “soon”. When the honest transaction is
broadcast into the network, it makes it into every honest party’s mempool (whereas
the adversary can ignore it). As soon as any honest block is mined, the transaction
will make it into the block if it has not been included in a previous block. Due to
chain growth, the chain will grow at a minimum rate of τ > 0. When the chain
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grows enough, the fresh chain chunk will have a minimum quality µ > 0, and so
will contain at least one honest block. That block will contain the transaction in
question. This is captured in the following theorem:

Theorem 8 (Chain Growth and Chain Quality ⇒ Liveness (informal)). If the
blocktree satisfies Chain Growth and Chain Quality with positive parameters τ and
µ respectively, then the longest chain protocol is live.

Notice here the Common Prefix parameter k is a part of our construction and is
a value hard-coded into our implementation of the read functionality. If we choose
this value wisely, we can prove that the Common Prefix virtue with parameter k
is respected. The τ and µ parameters are not part of our construction. We will
simply calculate these values when we prove that our chains attain all three virtues.

In summary, chain virtues give rise to ledger virtues. Safety follows from Com-
mon Prefix and liveness follows from Chain Growth and Chain Quality together.

6.8 Further Reading
The two chain virtues of Common Prefix and Chain Quality were first defined in the
Bitcoin Backbone paper [14] by Juan Garay, Aggelos Kiayias and Nikos Leonardos.
The Chain Growth virtue was identified in a later paper [22] by Aggelos Kiayias and
Giorgos Panagiotakos. The ledger virtues of safety and liveness have been adapted,
with appropriate modification, from older literature from the 1980s and 1990s in
the context of two problems known as the Byzantine Generals Problem and the
Byzantine Agreement Problem. These two problems are very related to the type of
problem that blockchains are trying to solve. The Byzantine Generals Problem was
originally studied in a seminal 1982 paper [23] by Leslie Lamport, Robert Shostak,
and Marshall Pease.

6.9 Problems
TBD

89



Chapter 7

Attacks

In the previous chapter, we saw two basic attacks: the Fan-Out and the Nakamoto
Race. The Fan-Out is more of a misconfigured network situation, because no mining
adversary is required to mount it. The Nakamoto Race is a foundational attack. It
will function as a prototype for other attacks which we will explore in this chapter.

In this chapter, we will talk about how the various ledger virtues we defined in
the last chapter can be broken by adversaries of varying mining power. Because
ledger virtues follow from chain virtues, the adversary will have to break the chain
virtues first. So we will look at examples of attacks that break the chain virtues.
Remember, if we describe an attack that works, this is sufficient to illustrate that
the system is broken. However, if an attack we think about happens not to work,
this is not sufficient to argue that the system is secure. We may have just happened
to think of the wrong attack.

7.1 Attacks of a Minor Adversary
A minor adversary is an adversary for which t < n − t. This is also known as a
< 50% attack. What virtues can such an adversary break? Let us go over all the
virtues in question and explore how much an adversary can break them.

Common Prefix
As we saw in the last chapter, it is possible to have good or bad configurations of
the system if the parameters T and k are set incorrectly when the ∆, t, n, q that
exist on the network are taken into account. For example, consider the extreme
value T = 2κ. Then every query is a successful query, and every successful query
failed to be a convergence opportunity. Then, if there are multiple honest parties
n − t > 1, it doesn’t make a difference how much we wait for k; we will never
have convergence. As such, Common Prefix is not achieved, and therefore safety is
violated. In these very misconfigured networks, the adversary can cause a Common
Prefix violation even with no mining power, just by allowing the honest parties to
diverge on their own.

However, in proper blockchain protocol configurations, the density of conver-
gence opportunities will be more than the density of adversarially successful queries.
In these cases, the best attack that a minor adversary can do is to perform the
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Nakamoto Attack [11]. As we’ve seen, using this attack she cannot break Common
Prefix, except with negligible probability in k. The more we allow k to grow, the
more the actual successful queries of the adversary and the actual convergence op-
portunities will tend to approximate their expectations. We will make this argument
precise when we prove the Common Prefix against all adversaries in Chapter 13.

Chain Growth
Even though a minor adversary can affect the chain velocity τ of honest parties
by stopping her mining, she cannot prevent the rest of the honest network from
mining. If she is a minority adversary, this can mean she can drop the expected
chain growth rate to at worse 1

2 of what it would be were she to mine honestly. The
best strategy for harming chain growth is simply not to mine. Even if the adversary
mines withheld chains in the fashion that the Nakamoto Race attack does, these
chains will not be adopted, unless they are longer than what the honest parties
have adopted. In these cases, even though the honest parties are switching from
one chain to another, the chain they are switching to is still longer than what they
have, and so Chain Growth is happening.

Chain Quality
For a minor adversary to harm Chain Quality, she would have to try and supress
as many honestly generated blocks as possible from becoming adopted by honest
parties. Ideally, she wants honest parties to adopt chains that only consist of
adversarially generated blocks.

In case the adversary plays honestly, and no forks occur on the chain, then
the number of blocks she gets is proportional to her mining power. The honest
adversary1 therefore achieves quality µ = n−t

n . This matches our expectation that
the proportion of blocks on a chain generated by a particular party match his mining
power.

7.2 Selfish Mining
We might try to think about different strategies in which the adversary may try to
harm quality. There is an adversarial strategy known as Selfish Mining which is a
modified version of the Nakamoto Race, and specifically targets the minimization
of the quality of the honestly adopted chain.

The adversary works as follows. Initially, all honest parties start at some block
B. Similar to the Nakamoto Race, the honest parties and the adversary mine on
separate forks, both extending B. If at any point of time the adversary finds a
block on her fork, she keeps it secret, similarly to the Nakamoto Race. She can
keep growing her secret fork more and more. If at any point in time the honest
parties find a block, then the adversary wishes to suppress it from the honestly
adopted chain. There are two cases: Either she has at least one withheld block
up her sleeve on her secret fork, or she does not. If, when the honest parties mine
a block, the adversary does not have a withheld block up her sleeve, then there

1The honest adversary is not a misnomer. Remember that the adversary controls any party
which we did not designate as honest. She can do whatever she wishes with that party – including
playing honestly.
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isn’t much she can do. Since she doesn’t have any secret blocks, she accepts that
the honestly mined block that was just broadcast will be accepted as part of the
honestly adopted chain, and restarts mining her secret fork on top of the honestly
generated block.

On the contrary, if she has one or more withheld blocks up her sleeve, she releases
exactly one of her withheld blocks in an attempt to kick out the block produced by
the honest party from the honestly adopted chain. If the adversary’s block makes
it to the doorstep of other honest parties before the honestly mined block arrives,
the adversarially generated block will be adopted, and the honestly generated block
will be rejected. The adversary keeps the rest of her withheld blocks secret so that
they can be used in the future.

Whether the adversarial block can make it to the doorstep of an honest party be-
fore the honest block makes it there is an issue of how well positioned the adversary
is on the network. Remembering our threat model, we want to make the adversary
as powerful as possible, so that, when the time comes to prove the security of our
protocol, the proof of security will be the strongest. As such, we will assume that
the adversary has significantly better network presence than the honest parties.
We model this as follows. Whenever any honest party broadcasts a message to the
network, the adversary gets a chance to see it first, prior to any other honest party
seeing it. The adversary then has the choice to broadcast her own message prior
to the honest message making its way. In this way, the adversary can rush ahead
in her message delivery as compared to the honest message delivery. She can fron-
trun honest messages after seeing them so that adversarial messages get delivered
prior to the honest message. We call such an adversary a Rushing Adversary. This
may seem like giving too much power to the adversary, but is not an unreason-
able assumption in practice. When we deploy our real systems, we want to give
assurances to honest parties even if they have very basic network connectivity, for
example through a slow Internet connection in a remote area. On the contrary, it
is rather inexpensive for the adversary to buy good network presence by deploying
some servers on central Internet backbone locations. This would allow the adver-
sary to actually mount rushing attacks against parties located on the Internet’s last
mile quite successfully.

The basic idea of the selfish ming attack is that, whenever the adversary has a
headstart of secretly kept blocks, any honest mining power goes to waste, because
any blocks produced by the honest parties during those moments will be kicked out
by the competing blocks broadcast by the rushing adversary.

This is a more complicated attack than what we’ve seen before, so let’s look
at an example execution of the attack. The example is illustrated in Figure 7.1.
The honestly generated blocks are colored blue, while the adversarially generated
blocks are colored red. The final honestly adopted chain is displayed at the bottom
and consists of a mixture of honestly generated and adversarially generated blocks,
whereas abandoned honest blocks are seen at the top as temporary forks. The
blocks are numbered in the order they were mined. As you can see, adversarially
mined blocks are never abandoned. The only blocks ever abandoned are honestly
mined. Additionally, all temporary forks have a length of exactly 1. The example
begins with everyone having genesis. Initially, both the adversary and the honest
parties attempt to mine a block on top of genesis. An honest party manages to get a
block first, and this is block 1. As the adversary does not hold any withheld blocks,
she adopts block 1, and so does every other honest party. Now the honest parties
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and the adversary all mine on top of block 1. At this point, the adversary manages
to get block 2, but keeps it secret. Now the adversary is mining on top of block 2,
but the honest parties are mining on top of block 1. At this point, the adversary
gets lucky and manages to mine another block 3 on top of block 2. She keeps both
block 2 and block 3 secret. Now the adversary is mining on top of block 3, but
the honest parties are still mining on top of block 1. An honest party manages to
get block 4 and broadcasts it to the network. The adversary sees this block being
broadcast on the network and rushes to send her own block 2 in order to suppress
honest block 4. Since the adversary is rushing, she manages to get block 2 on the
doorstep of every honest party prior to them seeng block 4. Therefore every honest
party (beyond the one who mined block 4) now adopts block 2 and keeps mining
on top of it. Note how the honest mining power that went into mining block 4 went
completely to waste here, because the adversary knew ahead of time that she would
be able to replace this block. Now every honest party is mining on top of block 2,
but the adversary is still ahead and mining on top of block 3. The honest parties
generate block 5, but the adversary counters by releasing block 3. The adversary
maintains her lead by finding block 6, and broadcasts it upon seeing block 7. At
this point, both the honest parties and the adversary have adopted and are mining
on top of block 6, and the adversary has no headstart any more.

The honest parties manage to get block 8, which the adversary is forced to
accept, since she has no withheld blocks at this time. Next, she gets 9 and keeps it
secret. The honest parties get 10, but the adversary uses 9 to suppress it. At this
point, both the honest parties and the adversary are mining on 9. The adversary
gets 11. The honest parties get 12 and the adversary suppresses it with 11. The
honest parties get 13, which the adversary accepts. Next, the adversary gets 14.
The honest parties get 15, and the adversary suppresses it with 14. Lastly, the
honest parties get 16 and everybody adopts it.

G 1 2 3

4 5 7

6 8 9

10

11

12

13 14

15

16

Figure 7.1: The selfish mining attack in action. Red blocks (2, 3, 6, 9, 12, 14) are
adversarially generated, whereas blue blocks are honestly generated.

We wish to discover how low the chain quality µ gets for various values of t
n .

This attack seems harder to analyze analytically, so we will use a simulation method
to analyze its effectiveness. In the simulation, we will code a simplified model of
the attack in which the honest parties only get convergence opportunities, and
there are no successful queries that are not convergence opportunities. This gives
an advantage to the honest parties, so, if our adversary is successful against these
honest parties, she is definitely going to also be successful against more modest
honest parties who also have to deal with the lack of convergence opportunities.
We use this simplification because we consider temporary forks due to network
desynchronization immaterial to the attack in question, and we want to get an
approximate feeling for how the chain quality behaves.
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The pseudocode for the simulation is illustrated in Algorithm 14. This simula-
tion uses the Monte Carlo method: An experiment is repeated many times (Line 4),
and a quantity of interest (here, the chain quality µ) is measured during each ex-
periment (Line 21). An average is then taken across all experiment executions
(Line 24). The hope is that, even though each experiment may yield an unusual
value, the average value will be indicative of the attack’s nature.

Each experiment proceeds as follows. Initially, all honest parties have only the
genesis block, so all honestly adopted chains have just one honest block (Line 6).
Each experiment allows the chain adopted by the honest parties to grow until
it reaches a predetermined length c (Line 8). While blocks are produced in the
experiment, the simulation keeps track of how many blocks adopted by the honest
parties have been honestly generated (honest), as well as how many blocks adopted
by the honest parties have been adversarially generated (adversary). The simulation
also keeps track of the number of blocks the adversary has generated but is still
keeping secret (advantage). At every iteration, we allow one block to be mined,
and we give the block to the adversary with probability t

n , or to the honest parties
with probability n−t

n . This is done by selecting a uniformly random number in the
interval [0, 1) and then comparing it with t

n (Line 9). For simplicity, as discussed
before, we assume all honestly generated blocks are instantly communicated to
the rest of the honest parties, so no divergence occurs between honest parties.
Nevertheless, the rushing adversary has the option to rush whenever an honest
block has been produced, and the adversary has an advantage.

If the honest parties get a block, then the adversarial advantage is checked. If
the adversary has no advantage, this means that the number of honestly generated
blocks in the honestly generated chain increases by one (Line 17), and the adversary
starts mining on top of the new honestly generated block. The adversarial advantage
remains 0. If the adversary has a positive advantage, then the adversary broadcasts
one of the previously secret blocks, and so displaces the honestly generated block,
which is discarded by all honest parties. In this simple simulation, we ignore the
fact that the honest party who mined this block will keep mining on it. This is
an accurate simplification if the mining parties are many, with a small amount
of mining power each. This causes the adversarially generated block to become
honestly adopted, and the adversarial advantage to decrease by one (Line 14).
Lastly, if the adversary happens to get a new block, then this block is kept secret
for the moment, and the adversarial advantage increases by one (Line 11).

The Monte Carlo method is a very useful method to get an initial feel of whether
an attack can be successful and to analyze probabilities and other values of interest.
While it is not an analytical method, it can often function as a first indicator of
whether an attack makes sense, and whether further theoretical analysis is war-
ranted. It can also be used as a mechanism to double-check our theoretical results.
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Algorithm 14 A Monte Carlo simulation to calculate the chain quality achieved
by a minor selfish miner.

1: function simulate-selfish(n, t, c,m)
2: pr← t

n ▷ Probability of the next successful query being adversarial
3: σ ← 0
4: for i = 1 to m do ▷ Monte Carlo iteration
5: advantage← 0 ▷ Length of current secret adversarial fork
6: honest← 1 ▷ Honestly generated honestly adopted block count
7: adversary← 0 ▷ Adversarially generated honestly adopted block count
8: while honest + adversary < c do ▷ Make a c-long chain
9: r

$← [0, 1) ▷ Roughly simulate mining stochastic process
10: if r < pr then ▷ Adversary gets block
11: advantage← advantage + 1
12: else ▷ Honest parties get block
13: if advantage > 0 then
14: advantage← advantage− 1 ▷ Reveal previously secret block
15: adversary← adversary + 1 ▷ Rushing adversary succeeds
16: else ▷ Advantage remains 0
17: honest← honest + 1 ▷ Unsuppressible block
18: end if
19: end if
20: end while
21: µ← honest

honest+adversarial ▷ Quality of the particular honestly adopted chain
22: σ ← σ + µ
23: end for
24: return σ

m ▷ Average quality
25: end function

Plugging some numbers into this simulation, we observe that, for large values
of c and m, the average chain quality converges to 1

2 for t
n = 1

3 , and to 0 as t
n →

1
2 .

You are asked to verify these results in Problem 7.1.
We used a simulation to calculate these numbers to get a feel for them, but

we can also support these numbers theoretically and develop a closed-form formula
for the achieved chain quality. To see how this attack performs, note that every
adversarially mined block is accepted in the honestly adopted chain. For every
adversarially generated block that is accepted on the honest chain, there is one
honestly generated block that was displaced from the honestly adopted chain. Those
are exactly the honestly generated blocks that are wasted. The rest of the honestly
generated blocks make it to the honestly adopted chain.

Let L be the total number of blocks produced, of which LA are adversarial and
Lh are honest. The ratio LA

L will approach t
n , the ratio Lh

L will approach n−t
n , and

the ratio LA
Lh

will approach t
n−t after long executions. Let |C| denote the length of

the ultimate honestly adopted chain, |CA| be the number of adversarial blocks in
it, and |Ch| be the number of honest blocks in it. We have that |CA| = LA since all
adversarially generated blocks are eventually adopted, but |Ch| = Lh − LA, since
every adversarially generated block displaces an honestly generated block. Lastly,
|C| = |CA| + |Ch| = Lh. The overall chain quality will be µ = |Ch|

|C| = Lh−LA
Lh

=

1− t
n−t =

n−2t
n−t . This verifies our simulation results.
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The conclusion is that a minor adversary with close to 50% mining power can
bring chain quality very close to 0. Regardless, if the adversary has mining power
strictly less than 50%, the chain quality will be non-zero. Incidentally, the fact
that in the above calculations |C| = Lh also shows that the selfish mining attack
is minimizing both chain quality and chain growth at the same time, since the
adversarially mined blocks do not contribute to the honestly adopted chain growing
more than it would grow even if no adversarial blocks were to be mined.

A minor adversary cannot break Common Prefix for large k, can reduce but not
eliminate the chain velocity τ , and can reduce Chain Quality µ close to, but not
equal to 0, the minor adversary cannot break the ledger virtues. Safety survives
because of Common Prefix. Liveness survives because the chain grows and the chain
quality is non-zero. Remember that, to ensure liveness, it is required that just a
single honest block survives once in a while. While the time it takes for transactions
to confirm will be harmed, all honest transactions will eventually make it to the
ledger of all honest parties, and these ledgers will remain consistent.

7.3 Attacks of a Major Adversary
We have explored the attacks of a minor adversary, and showed that ledger virtues
survive them in a well-configured blockchain network. Let us now turn our attention
to a major adversary, an adversary with t > n− t. Such attacks are also known as
51% attacks (or > 50% attacks).

Common Prefix
A major adversary can easily break Common Prefix by performing the Nakamoto
Race, as discussed in the previous chapter. In fact, the larger the duration of
the race, the more blocks the adversary gets. Increasing the Common Prefix k
parameter in our confirmation rule does not help! Concretely, if the honest parties
have converged to a tip B, the adversary can start mining on top of B[:−1]. Once
she has mined k+2 blocks and holds a chain CA, she waits for the honest parties to
also mine their own k blocks on top of B forming the chain C. She then releases her
chain and, since it is longer, the honest parties switch to it. The Common Prefix
property is violated because, prior to the switch, the honest parties were holding
a chain whose stable chunk C[:−k] was not a prefix of the adversarially produced
unstable chain CA. In particular, C[:−k][−1] does not appear in CA. Refer back to
Figure 6.6 for a visualization.

Chain Quality
A major adversary can easily break Chain Quality and achieve exactly µ = 0 by,
again, performing the Nakamoto Race. In fact, the adversary can simply just ignore
all honest blocks, and mine on her own from the genesis block. No matter what the
honest parties do, she will eventually surpass them and build a longer chain. The
honest parties will adopt the adversarially generated chain. Since the adversarially
generated chain only consists of adversarially generated blocks (with the exception
of the genesis block), the chain quality of the chain chunk C[1:] will be 0.
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Chain Growth
For the same reasons that a minor adversary fails to completely eliminate Chain
Growth, the major adversary also fails to eliminate Chain Growth. The best attack
the adversary can perform is to remain idle. Then velocity τ then drops to roughly a
proportion n−t

n of the rate it would have if the adversary were honest. Nevertheless,
if n − t > 0, the chain continues to grow. The fact that the adversary cannot
significanty harm Chain Growth is a consequence of the longest chain rule of our
protocol.

Safety
Since the major adversary can break Common Prefix, she can also break ledger
safety. The double spending attack using the Nakamoto Race is one example. A
transaction that is rolled back from an honest party’s ledger and then replaced by
a different transaction in the same position is a safety violation.

As we discussed when we first introduced the double spending attack in Chap-
ter 3, the double spending is problematic because it has real-world ramifications.
When the adversary double spends, she receives some real-world goods, such as a
car. When a conflicting transaction appears on the ledger of the seller and the orig-
inal transaction is reverted, the adversary has long since departed with her brand
new car. However, note that, while the adversary can break safety, the ledgers
adopted by the honest parties are always locally consistent. There is never the case
of an honest party adopting a ledger that contains two conflicting transactions.
The only thing that happens is that an honest party switches from one, locally
consistent, ledger to another, also locally consistent, ledger.

It is worth noting that a major adversary cannot steal an honest party’s money
from the system. Spending an honest party’s money would require creating a signa-
ture that validates with the honest party’s public key. That would require stealing
the honest party’s secret key, or breaking the existential unforgeability property of
signature schemes. Therefore, even a major adversary cannot take our money.

A major adversary also cannot create more money than what is allowed by
the macroeconomic policy, because blocks that violate the macroeconomic policy
are not accepted by the honest nodes. Recall that when a block is validated,
the coinbase transaction is checked, and part of that check includes validating the
macroeconomic policy. Even though the honest nodes are a minority, they do not
accept an invalid chain which violates these basic rules.

Liveness
While the major adversary cannot break Chain Growth, she can break Chain Qual-
ity and therefore she can cause a liveness violation. This can be used to mount
censorship attacks. As soon as the censoring adversary sees an honest transaction
she dislikes, she starts mining on top of the currently adopted block, excluding the
transaction in question from her block. She keeps mining on top of that block,
eventually creating a longer chain than the honest parties because she holds the
majority of compute. She must continue to mine, because she cannot allow any
honest block to ever make it into the chain, as honest parties are still including the
transaction in question in their mempool. Contrary to a Nakamoto Race, she does
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not need to keep her fork secret, and she can allow it to be extended by the honest
parties at any time.

Such a situation is depicted in Figure 7.2. The white circle represents a tran-
sation that the adversary wishes to censor. Whereas the honest parties are con-
tinuously attempting to include it into their blocks, the adversary keeps displacing
their blocks by mining on top of the parent block. The honest blocks with the
transaction in question never makes it into the ultimate honestly adopted longest
chain.

Figure 7.2: A major adversary mounts a censorship attack.

7.4 Healing
Even though a major adversary can break Common Prefix, Chain Quality, Safety,
and Liveness, it is worth considering whether these properties heal when the adver-
sarial power goes back to a low value. The idea is that we may have a temporary
dishonest majority, which overtakes the network for a short duration of time, but
the adversary soon goes back to controlling the minority of compute. While we will
not prove the exact formulae which determine the healing parameters of the chain
in this book, we want to give intuitive arguments about why a proof-of-work chain
heals very naturally.

The temporary dishonest majority situation is depicted in Figure 7.3. The
system begins with a minor adversary whose compute increases until it exceeds
50%. The dishonest majority compute remains for a period of time, until the
adversary’s compute drops back to below 50%.

Common Prefix
We already know that the major adversary can break Common Prefix, no matter
what parameter k we choose. However, if she only has temporary dishonest majority,
she cannot revive very old temporary forks, because it would take a long time to
have them catch up with the current times, so she must mine on a recent temporary
fork. She will likely be able to create a temporary fork longer than k blocks long,
but not arbitrarily longer, because she has limited time. The length of temporary
forks will still be bounded. When the adversary’s mining power drops below the
majority, she has limited time until she can reveal any secret temporary forks she
has mined, because the honest parties will soon create a longer chain and the, now
minor, adversary will not be able to catch up. Hence, such withheld temporary
forks will soon be useless. As such, Common Prefix can only be broken during the
time of dishonest majority, and perhaps a little earlier and a little later. However,
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Figure 7.3: The temporary dishonest majority.

if we wait enough time after the adversary has gone back to being minor, we will
still have some Common Prefix assurance.

More concretely, there will be certain dangerous times which extend from the
moment the temporary dishonest majority takes over and slightly after the dis-
honest majority period, during which we cannot give Common Prefix assurances.
Nevertheless, the chains of honest parties adopted before these dangerous times,
and the chains of honest parties adopted after these dangerous times will be con-
sistent. In fact, chains adopted before the dangerous times will also be consistent
with chains adopted after the dangerous times. Common Prefix heals.

Chain Quality
We can apply a similar argument to show that Chain Quality heals. The adversary
cannot go back and rewrite very old chunks of the honestly adopted chain. Addi-
tionally, soon after the adversary goes back to being minor, honest blocks will keep
making it into the honestly adopted chain. The problematic chunks concern only
those produced during the dangerous times, which extend from a duration before
to a duration after the dishonest majority interval. Chain Quality heals.

Safety
It is not safe to use the system when an adversary has the upper hand. Additionally,
it is hard to tell when an adversary has the upper hand and when one should not
use the system. However, if a particular user happens not to use the system during
and around times of dishonest majority, the user will be safe. In particular, one is
not susceptible to transaction rollbacks or double spending if one waits sufficiently
long after the system has recovered. Because the adversary can roll back chains
that have appeared as confirmed retroactively after the dishonest majority period
commences, the dangerous times extend for a period prior to the dishonest majority
period. Ledgers reported by honest parties at times before the dangerous times and
after the dangerous times will be consistent with one another. Safety heals, because
Common Prefix heals.
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Liveness
The adversary can censor transactions for the duration of time she controls dishon-
est majority. However, soon after, Chain Quality recovers, and honest blocks make
it into the chain. This means that censorship attacks will eventually be recovered
from, soon after the adversary loses the upper hand. At that point, any trans-
actions that were previously censored will be included in the honestly generated
blocks. Additionally, any newly produced transactions will make it into the new
honestly generated blocks as well. Liveness heals, because Chain Quality heals.

Problems
7.1 Implement Algorithm 14 in your favourite programming language, and run it

for values t, n, c,m of your choice. Can you reproduce the results described in
the text?

7.2 Use the Monte Carlo method to implement a simulation to calculate the density
of convergence opportunities in time for various values of n, t, T,∆. Plot your
result. Does your graph resemble Figure 6.4?

Further Reading
The Nakamoto Race was explored in Satoshi’s Bitcoin paper. There, he analyzed
the probability of the success of a minority adversary mounting the Nakamoto Race
attack against a majority of honest parties. This is the only attack that Satoshi
analyzed. He did not prove that his protocol is secure against all adversaries. The
longest chain protocol was analyzed and proven secure against all adversaries in
the later work of the Bitcoin Backbone, which we explore in the later chapters of
this book.

In an even later work from 2020, Everything is a Race and Nakamoto Always
Wins [11], the authors discuss hod Satoshi has been right all along, but we did not
know it: In fact, any mining attack an adversary can possibly perform is roughly
equivalent to a Nakamoto Race.

While the Fan-Out was known to Nakamoto, but was made precise in the Bitcoin
Backbone line of work, where they argue that

f cannot be too large, because [this would mean] that uniquely success-
ful rounds will not produce sufficiently many PoW’s to overcome the
PoW’s produced by the adversary.
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Chapter 8

Economics

So far, we have analyzed our protocols in the honest majority setting, assuming that
most parties will follow our protocol. We provided assurances such as safety and
liveness to honest parties. But it’s not clear why, even though these assurances are
provided, anyone should follow our honest protocol, especially if they can achieve
better benefits by deviating from it. If there is money to be made by violating the
protocol, it is likely that a majority of participants will do so. Instead of assuming
honesty, it would make more sense to assume that participants are rational. A
rational party does not necessarily follow the prescribed honest protocol. Instead,
he may deviate from the rules in order to make money. The ideal scenario would
be if the honest protocol we designed is also incentive-compatible: that there is no
better strategy that a party can follow which deviates from the honest strategy and
makes them more money (a Nash equilibrium).

8.1 Rationality Models
There are a few different models in which we can analyze our protocols. In the
cryptographic model, the majority of parties are assumed to be honest (and PPT),
whereas the rest are allowed to be arbitrarily adversarial (they can be any PPT
algorithm). In the game theoretic model, all parties are typically assumed to be
rational, and no computational restrictions are imposed upon them. However, the
game theoretic model does not typically account for adversaries who are willing to
deviate from the protocol even if they are about to lose money. Such parties can
be realistic in cases where, for example, a nation-state wishes to invest resources
simply to shut down a decentralized protocol. But the cryptographic model does
capture such adversaries, as long as most other participants are honest.

It would be nice to capture the best of both worlds. The most powerful results
would be achieved in a model where a majority of parties are assumed to be PPT
rational, whereas a minority are assumed to be arbitrarily PPT adversarial. This is
holy grail model and its comparison to the other models is depicted in Figure 8.1.
Unfortunately, analyzing protocols in the rational majority setting is very difficult
with the current mathematical tooling available to us. Analyzing the incentives of
blockchain protocols is only possible for very simple protocols, or for very simple
models, and having an arbitrary PPT adversary in the picture makes things even
harder. While we would like to have analyses in this model, it is rarely the case
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that we can. There are many reasons for this, among others the complexity of the
protocol, the large number of parties, the broad range of available strategies, the
fact that the protocol is iterated over large periods of time, and the fact that the
practical instances of these protocols have externalities such as payments that can
be received outside of the protocol.

PPT A PPT A

PPT rational

rational

PPT honest
Cryptography

“honest majority”
Game Theory
“rationality”

Blockchain Science
“rational majority”

Figure 8.1: The cryptographic, game theoretic, and blockchain science model.

Regardless of the limitations of our understanding and ability to prove things
precisely in the rational majority setting, it is still worthy to think about the ratio-
nality of our design. While we might not be able to prove that our honest protocol
is incentive-compatible and survives against arbitrary adversaries, we also want to
make sure the honest protocol is not costly to operate without providing appropriate
incentives to honest participants.

In the particular case of the proof-of-work protocol we have studied, running
the honest mining protocol is actually extremely costly. At the time of writing,
Bitcoin consumes more electricity than the whole country of Argentina, which is
an expensive endeavour. Therefore, miners need to be incentived to secure the
network, for example by having their electricity paid for.

We have already examined the mechanisms by which miners are paid when they
successfully mine a block in Chapter 5, where we mandated that a block’s coinbase
transaction pays out a total amount ft which consists of the block reward fr and
the block fees ff :

ft = fr + ff

Both of these terms are denominated in the system’s native currency. We will
now study these two terms in more depth.

8.2 The Block Reward
The block reward part constitutes the macroeconomic policy of the system. This
block reward plays a dual role for the system: Firstly, it incentivizes miners to
participate in the honest protocol. Secondly, it is a natural mechanism for the
decentralized creation of money. Whereas the first purpose is necessary to make the
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protocol incentive-compatible, the second part is a policy decision of the protocol.
For example, it is equally possible to have protocols in which new money creation is
left up to a central party, which can be the party to whom the newly issued money
is paid out to, and only a small proportion of the proceeds to go to the miner. This
would centralize money issuance, but still enable decentralized public verifiability.
Such decisions are a matter of policy.

The exact algorithm determining the value of fr is hard-coded into each full node
and is part of the block validation algorithm. When a block is validated, its coinbase
is also validated, and this is where the macroeconomic policy is checked for validity.
It is typically not possible to change these rules of the cryptocurrency, unless the
community of the currency all decide to move to a new policy and upgrade their
software together. Such decisions can be difficult and contentious.

There are a few alternatives that can be followed in the macroeconomic policy of
a cryptocurrency. The policy is defined as a function of the block fr(B). One option
is to make the reward constant, which means that the total supply will continue
increasing at a constant rate. Another option is to make the reward decreasing over
time until it becomes 0. In such a system, the function fr depends on the block
height. With such a policy, the total supply is increasing over time, but converging
to a particular value.

This is the policy that Bitcoin follows. Bitcoin’s macroeconomic policy is an
interesting concrete example, because many other cryptocurrencies follow a similar
policy. The function fr for Bitcoin follows a staircase pattern, with long periods
of constant supply per block. The supply began at a rate of 50 bitcoin per block
at genesis. Every four years in block time (which corresponds to 210,000 blocks
because η = 10 minutes in Bitcoin), the reward per block drops to a half (a process
known as reward halving). The reward schedule for Bitcoin therefore began at 50
bitcoins per block during the years 2008-2012, dropped to 25 bitcoins per block
during the next four years, and so on. At some point in the future the block reward
in Bitcoin will drop below one Satoshi, at which point it will become 0 and no new
coins will enter the supply. In about a century, Bitcoin will reach a total supply
of 21 million bitcoin, and the reward will drop to 0. This macroeconomic policy
is depicted in Figure 8.2 (in this graph by CoinDesk, subsidy refers to the block
reward).

One of the problems with such a policy is that the reward function fr(h) is
discontinuous with block height, and the finite difference of the total supply function∑

fr changes abruptly at the points of reward halving. This behavior can cause
market shocks because the incentives to the miners shift abruptly. Consider a miner
who has invested in a large business to mine blocks. The cost of electricity to mine
is a certain amount. At the moment of reward halving, the miner is still spending
the same amount per month in electricity, but only getting half of the nominal
rewards. Electricity is typically paid out in fiat (i.e., non-crypto) currency such as
USD. If the price of Bitcoin in USD remains the same, then the miner will be forced
to stop half of their operation overnight. Alternatively, if the miner is to continue
operating at the same rate, the price of Bitcoin in USD needs to double overnight.
Both of these are undesirable situations.

To avoid such market shocks, other cryptocurrencies have adopted a more nu-
anced macroeconomic policy. One such example is Monero which pioneered the
concept of smooth emission. In such a system, the rewards are reduced slightly
in every block, following a pattern similar to Bitcoin’s macroeconomic policy, but

103



Figure 8.2: Reward Halving for Bitcoin Supply (source: coindesk)

adjusted to work in a more continuous manner.
The reward and total supply functions for Bitcoin and Monero are illustrated

in Figure 8.3. The actual reward and supply over real (and not block) time can
fluctuate less smoothly than anticipated because of the stochastic nature of proof-
of-work. Note how Bitcoin’s block reward forms a staircase, while Monero’s is a
smooth curve. Due to a decision taken by the community, Monero’s rewards flatten
out at the point indicated by the vertical red line.

Because the total supply stops growing at some point in time, Bitcoin and Mon-
ero are deflationary cryptocurrencies. Many orthodox economists believe that de-
flationary cryptocurrencies are inappropriate as currencies, because they encourage
hoarding and not spending when the emission period is over. This is one reason why
other cryptocurrencies have no limit on their total supply. Instead, they continue
to inflate the currency and are therefore known as inflationary cryptocurrencies.
While it is important that the total supply of a cryptocurrency is limited at every
point in time to ensure scarcity, it is not necessary that there is a global total bound
across all of time. One such example cryptocurrency is Dogecoin.

Overall, the decision of the macroeconomic policy of a system is up to the
economists and the community, and there is no exact science that can define it
in an objectively acceptable manner. Any emission algorithm which is socially
acceptable by the economic participants can be used.

The block reward is the main way miners are incentivized to mine.
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Figure 8.3: The total supply (top) and block reward (bottom) for Bitcoin and
Monero.

8.3 Miner Fee Optimizations
While miners are incentivized to mine blocks by giving them a block reward, they
need to also be incentivized to include transactions in their blocks. Otherwise, they
will simply create empty blocks, blocks that contain only a coinbase transaction and
don’t confirm any part of the mempool. This is solved by introducing transaction
fees.

The other term of the total payout is the fees ff (B) of a block B. Recall that
the fees are calculated as the excess money that goes into a transaction but does not
go out. Given a transaction tx in the UTXO model, the fees that this transaction
is paying will be ∑

i∈tx.ins
i.v −

∑
o∈tx.outs

o.v .

The creator of a transaction can choose how many fees he wants to pay, and
these can be 0 or larger.
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Each block contains many transactions, each of which may pay out fees. All
these transaction fees make up the fee part ff (B) of the block payout:

ff (B) =
∑

tx∈B.x
tx non-coinbase

( ∑
i∈tx.ins

i.v −
∑

o∈tx.outs
o.v

)
.

Including an extra transaction has minimal cost to the miner and does not affect
the mining rate. If there was no limit in how big blocks can be, a rational miner
would include all transactions paying even minimal fees. But contrary to what
we have described so far, we will need to introduce a block size limit so that our
assumptions can work out.

The Block Size Limit
So far, we have not imposed any limits on how big blocks can be. We have also
assumed that blocks can traverse the network within ∆ time, just like any other
network message. This should make you a bit suspicious by now. The larger a
block is, the more time it takes to send over the network. If we don’t impose a
bound on how large a block can get, then ∆ cannot be a fixed constant. There
are some simple ideas to make blocks of bounded size that don’t work. One such
example is to include just the transaction ids within the block, and then allow the
client to request each transaction as needed at a later time. Another example is
to just include the hash of the transaction sequence x, which already commits to
the transactions, and not the transactions themselves, again allowing the interested
client to download the transactions in question. We’ll explore these strategies in
more detail in Chapter 10 to optimize our protocol, but for now let’s observe why
these don’t fix the ∆ problem: The time ∆ really captures the time that is needed
for all the data to transmit over the network so that a block can be properly
validated. If we separate out transaction bodies from blocks, then a miner who
observes a new block on the network has to download all transactions in order to
ensure block validity. Otherwise, the miner cannot know if the block is valid or not
and where to mine.

To ensure our assumption of a ∆ delay holds, we will limit the size of a block
to Bmax:

|B| ≤ Bmax

This size limit must be denominated in actual bytes (or bits) transmitted over
the network, not in the number of transactions per block. The reason is that the
delay ∆ depends on the literal size of the object transmitted.

Miner Strategies
Generally speaking, which transactions to include in a block is completely up to
the miner, as long as the block ends up being valid. The miner can choose to leave
the block empty, fill it to the brim, include transactions that are paying small fees,
or include transactions paying large fees. The miner can also include their own
transactions at any position they want within the block, and reorder the rest of the
transactions in the block in any way they like. Despite all of this freedom, some
transaction inclusion strategies are better than others.
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A rational miner is looking to optimize the fees that they can gain by including
the highest paying transactions that they can. When the miner is mining, they
create a template block in which the included transactions are x∗. This x∗ is
computed as follows. If the transactions in their mempool x, plus the new coinbase
transaction, are enough to fit within Bmax, then the miner has no reason to exclude
any transactions. He can simply include everything to maximize his profits.

On the other hand, if the mempool x, plus the new coinbase transaction, exceed
the block size limit Bmax in size, then the miner must make a choice on which
transactions to include. He tries to maximize the profits by including the highest
paying transactions. In order to do that, each transaction is associated with a score.
The score of a transaction is defined as the fees it is paying divided by the bytes it
takes up:

score(tx) =
|tx|∑

i∈tx.ins i.v −
∑

o∈tx.outs o.v

The easiest way is then to order transactions by score, in descending order, and
take transactions until no more fit and Bmax would be exceeded. This strategy is
also known as the greedy strategy. The reason why the ratio fee/byte is used instead
of just the fee is that, naturally, a bigger transaction takes up more space in the
block, and must therefore pay accordingly. This concept that block space costs a
certain amount per byte is also known as block space rent.

Unfortunately for the miner, things are not so simple. The first issue that
arises is that transactions can either be included as a whole or not at all. It is
not possible to cut a transaction in half and just include a portion of it into the
block. This means that the strategy to just include the top-score transactions will
not perform optimally. One such example is illustrated in Figure 8.4. Here, the
block is illustrated as the outer blue box, with its size indicating the block size
limit Bmax. Transactions in the mempool (breaking away from our usual circle
notation) are displayed as smaller boxes containing numbers. The numbers within
the transactions indicate their score, and the size of a box indicates the transaction’s
size in bytes. The transactions have been ordered by the greedy strategy from left
to right in descending order according to their scores. The green transactions
are included in the block, as they are the transactions with the top scores. The
red transactions are not included in the block, as they have lower scores. The
transaction with a score of 4 barely doesn’t fit in the block. However, the greedy
strategy misses the fact that the two smaller transactions with a score of 3 can both
still fit in the block. A more clever solution would include these also. If it were
possible to cut the transaction with the score of 4 and partially include it, then this
solution would have been optimal, but we are forced to exclude it altogether, so the
transactions with a score of 3 are our next best option.

5 5 5 5 4 3 3

Bmax

Figure 8.4: The greedy strategy is not always optimal.
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This problem is known as the 0/1 Knapsack problem and is known to be an
NP-hard problem. Its best known solution is only pseudopolynomial (which means
it takes exponential time to execute). Therefore, the problem of optimizing which
transactions to include is, generally, difficult, and only heuristics can be employed
to solve it. These heuristics sometimes necessarily yield suboptimal solutions.

Even this simple rendition of the problem is NP-hard, but in fact the problem is
harder still. The transactions that can be included must also respect the topological
order induced by the transaction graph. We cannot include a transaction tx1 before
the transaction tx2 it is spending from. Therefore, the problem is similar to a 0/1
Knapsack, except that topological relations must also be preserved.

Lastly, there is one more complication. The simplistic honest miner maintains
a mempool that outright rejects double spends. This is fine for a miner who is
not interested in maximizing his profits. However, a rational miner wants to keep
track of double spends. If two conflicting transactions tx and tx′ are available,
the miner wishes to choose the one with the highest paying fee. Even if a double
spending transaction does not pay large fees, it may still worth be caching for later
inspection, because it may be the input to a next transaction that does pay large
fees. Therefore, a rational miner will also cache transactions outside of his mempool
and hold onto them in case they are later helpful in optimizing his profits.

In complex blockchains, such as Ethereum, the order of transactions in a block
may give rise to more nuanced profits than just those obtained from fees, and so
even more advanced techniques are needed. The strategies employed by modern
rational miners to optimize profits are extremely complicated and have given rise to
a whole industry on their own. In the modern world, computing the near-optimal x∗

and actually mining a block are two separate tasks. The computation of x∗ is a task
performed by searchers and builders, whereas the mining is performed by miners.
These are different, somewhat mutually trusted, parties running different software
and communicating with one another to optimize rational block production and
share these profits, which can range to tens of millions of dollars per month.

8.4 Wallet Fee Optimization
While the miner is trying to maximize their fees, the wallet of the user who is
spending money is trying to minimize their fees. What is observed on-chain is the
economic equilibrium between the two.

Refer back to Figure 4.5 to recall that the wallet is the piece of software that sits
between the human user and the full node. The job of the wallet is to take requests
from the human user to make payments, and to issue the relevant transactions
to make these payments. The human user places such a request by choosing a
particular recipient and value to transfer. It is up to the wallet to decide how to
build the transaction.

The timeline is roughly as follows. First, the human user places a request to the
wallet to make a payment of amount v to some recipient pk. The wallet receives
the human request. The wallet then decides an amount of fees per byte (the score)
that it wishes to spend on the transaction to be created. Based on this score and an
estimation of the size of the transaction which will be created, it estimates the total
fee ϕ that the transaction is about to pay out. It then builds a new transaction
tx, with an output of value v and recipient pk. It then asks the full node for
the current UTXO set. Among the UTXO set, the wallet (which maintains a set
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of private keys) can distinguish those outputs that belong to the user, since they
correspond to addresses encoding public keys that it holds the respective private
key to. It then can make a choice of outputs. This choice must make up a value of
at least v+ϕ, but can also exceed v+ϕ. The wallet adds those outpoints as inputs
to the transaction. If the total value in the input exceeds v+ ϕ, then it also adds a
change output whose value is the total value of the inputs reduced by v + ϕ. The
address in the change output is the encoding of a public key of a new private key it
generates and stores internally for future spending. After the choice of inputs has
been completed, the wallet inspects the new transaction for its size and may adjust
the ϕ amount accordingly. Overall, this is a heuristic process.

Some aspects of the above procedure are worth explaining in more detail. The
step of choosing the inputs of the transaction must be done so as to minimize the
total transaction size. The size of each outpoint is roughly the same, so what needs
to be minimized is the number of inputs. Additionally, if the change output can be
avoided, this is also desirable to reduce the size of the transaction. So, one strategy
is to simply consume all the largest outputs that the user owns until the value v+ϕ
is reached. However, this is not necessarily the best strategy, as this may lead to
future transactions that are more expensive. Generally, there is no exact answer to
this problem, because the wallet cannot know what future values the user will want
to spend. An ideal wallet would minimize the user’s fees across all of his spending
habits. Different wallets employ different heuristics to reduce the cost.

One more detail of the above procedure is to determine the score that the wallet
wishes to use for the upcoming transaction. To estimate the score, the wallet asks
the human user roughly how soon he wants the transaction to become confirmed
by being included in a block. This choice is a tradeoff between confirmation latency
and cost in fees. If the user wishes for fast confirmation, then the fees must be high.
If the user is willing to wait for some time, then the fees can be low. If the fee is
too low, the transaction may take a long time to be included, or may even never be
included. The user sets a desired confirmation time u (in, say, minutes). The wallet
knows that blocks are produced in expectation every η = 1

f . Once the transaction
makes it to a block, it will take another k blocks for it to become confirmed (recall
that k is the confirmation parameter). As such, the wallet attempts to adjust the
score so that the transaction makes it within the next u

η − k = uf − k blocks.
The wallet then inspects the most recent (uf − k) chunk of the currently adopted
blockchain by the full node C[−(uf − k):], sorts transactions by score, and takes the
minimum score. If the next (uf − k)-long chain chunk about to be mined happens
to behave similarly to the last (uf−k)-long chunk, then using this score will ensure
that the transaction will (marginally) make it within the next uf − k blocks, and
so will become confirmed within u time.

Some improvements in this heuristic can be made by looking into older chunks
and taking an average to ensure that recent blocks are not outliers. Also, instead
of simply taking the minimum score, the wallet can consider several among the
minimum-scoring transactions, considering that the miners of recent blocks may
have injected some transactions of their own with a very low score. Of course,
the mining process is stochastic, and so blocks may not appear exactly η apart.
Additionally, the network may become more congested, and people will tend to
increase their fees in that case. Fee estimators are inherently inaccurate. They can
only function heuristically and hope for the best.

If the fee of a transaction is miscalculated and it takes too long to make it into a
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block, there is a strategy to rectify this. The user can issue a new double spending
transaction that spends from all the exact same outputs, but pays a higher fee by
including a smaller amount in its change output. This new transaction can then be
broadcast to the network. Because miners are rational, they will choose to adopt
this transaction instead of the lower-fee-paying alternative which already exists in
their mempool. Such transactions are often issued by wallets in practice and are
known as replace by fee transactions, and do not constitute attacks. They are double
spends, but are not inherently malicious. While we previously said that only the
adversary issues double spend, now that fees have been introduced, it also makes
sense for honest wallets to do so on occasion. An example replace by fee transaction
is illustrated in Figure 8.5.

1000
Alice

Alice

Bob
340

648Alice

Bob
340

Figure 8.5: A replace-by-fee transaction. The same transaction is recreated, but
with a lower value on the change address.

8.5 Types of Wallets
The most risky part of a wallet concerns the responsibility of maintaining the secret
key private. A software wallet that runs on a mobile phone or a laptop computer
stores the secret keys encrypted with a user-provided password at rest. These are
safe for storing small amounts of money.

For larger amounts, a dedicated device known as a hardware wallet is used.
These wallets are USB devices that can be connected to a computer using a USB
cable. They are responsible for generating a (sk, pk) key pair by invoking the
signature scheme’s Gen function. The secret key sk never leaves the hardware
wallet, and this is enforced at the hardware level. The wallet sends the pk to the
computer so that the computer can generate the address to receive money. The
computer also has the responsibility of building transactions based on human user
requests. These unsigned transactions are then sent to the hardware wallet to obtain
a signature. Before signing the transaction, the hardware wallet will prompt the
human user for confirmation on the hardware device, displaying the total amount to
be paid and the recipient address. When the transaction is signed by the hardware
wallet and sent to the computer, the computer can then broadcast this transaction
to the network.

The hardware wallet ensures that, in case the computer becomes compromised,
the adversary cannot exfiltrate the secret key. Even if the adversary places a request
for a signature to the hardware wallet, the human user will see the request and reject
it. The hardware wallet is also protected by a PIN that must be entered by the user
before any transactions can be signed. Rate limiting mechanisms for repeated PIN
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trials are enforced at the hardware level. The hardware is built in such a way that,
even when physical access to the wallet is gained by the adversary, it is somewhat
difficult to extract the private key or generate a signature, although the protection
mechanisms at the hardware level have historically been subject to various attacks,
which were later patched.

Two popular hardware wallets in the current market are Ledger and Trezor.
Their photographs appear in Figures 8.7 and 8.6.

Figure 8.6: A Trezor hardware wallet requesting human confirmation for a transfer.

Figure 8.7: A Ledger hardware wallet connected to a computer using a USB cable
and requesting human input of the PIN.

We have already discussed that multiple secret keys can be generated so that
some basic level of pseudonymity is achieved by the wallet. Many wallets in the
UTXO model generate a new public/secret key pair every time they receive a new
payment. In contrast, in the accounts model, an account (which corresponds to
a public/secret key pair) is typically generated only when the user requests so.
Regardless of the model, wallets can be asked to generate and store a series of
secret keys. If this generation happens anew every time a key is requested, this can

111



be problematic, because the human user may have kept a backup of the keys at an
earlier time, and the backup will have to be taken again. Instead of generating a
brand new key every time it is needed, wallets often make use of a seed. The idea
of a seed is that it is a master secret key on which all other secret keys are based.

The seed is generated by sampling a κ-bit randomness uniformly at random.
This randomness is then encoded into a list of human-readable dictionary words
by splitting up the seed into chunks and using the chunk as an index within a
predetermined word list. Through this mechanism, the human-readable version of
the seed can be encoded to something that looks as follows:

online response lounge afraid slow renew bright ritual boring
cram taxi page

Different cryptocurrencies use a different number of words and different word
lists, so these seeds may look different. Some cryptocurrencies include checksums
in their encodings so that some errors of transcription can be detected.

The secret keys can then be generated from the initial seed. One simple way
to do this is to take the seed and hash it together with a counter i = 0, 1, 2, · · ·
to obtain the respective secret key. The first secret key is H(seed ∥ 0), the second
secret key is H(seed∥1) and so on. This method requires that the signature scheme
has a mechanism of deriving the public key from the secret key, and that its Gen
function returns a secret key uniformly at random from {0, 1}κ, except with neg-
ligible probability. Some signature schemes that are used in cryptocurrencies (for
example many elliptic curves) follow this form more or less, with some care required
to translate the hash output into the appropriate format for the private key.

In practice, a slightly more complex mechanism is used to derive the secret keys
from the seed, which allows generating keys for multiple different cryptocurrencies
from one shared seed. Such constructions are known as hierarchical deterministic
wallets (HD-wallets). The details of such constructions pertain to the engineering
of the various cryptocurrencies.

8.6 Variable Difficulty
As we briefly discussed in the healing section of Chapter 7, it is possible for the
adversarial power t to fluctuate, and for the system to alternate between periods
of honest majority and dishonest majority. Honest mining power n − t can also
fluctuate. In our calculations for the target T , we have assumed that all the system
parameters, including n and t remain constant. In reality, however, mining power
wildly fluctuates. As a blockchain system becomes more popular and the price of
its token increases, more rational mines join the system hoping to make profit from
it. This functions as a reinforcement mechanism for its security: The more value
a system stores, the more miners tend to want to mine for it because it is more
profitable, and the more expensive it becomes to attack, because the adversary
needs to expend a lot of money to reach a high t value. However, it is also possible
at times for the system to be undersubscribed by miners. At the same time, as
technology improves, the q value also tends to increase with time. It is not rare
for popular systems to see a tremendous increase of mining power over time. As
an example, Bitcoin’s hash rate in the unit of time (nq in our terms, assuming the
adversary is also mining in her full capacity) is illustrated in Figure 8.8. This hash
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rate is not directly observable, but can be deduced by the block production rate
and the proof-of-work target T .

Figure 8.8: Bitcoin’s hash rate from its inception to 2023.

When we calculated the T parameter, we based our calculations on n and q. As
these values change over time, the parameter T will need to be adjusted. Otherwise,
successful queries may become too rare or too dense, leading to issues of liveness
or safety respectively.

When the system was first launched, the T parameter was calibrated according
to the network parameter ∆, which we assume does not change much over time (a
change in ∆ implies technical innovations on the physical network level, which we
do not treat in this book), and the mining power nq which existed at the first stages
of the system’s lifetime. Based on the estimated ∆, the system was calibrated in
order to achieve a particular expected block generation rate η. For example, in
Bitcoin, the system was calibrated to achieve an η of 10 minutes per block. We
wish this η to remain constant throughout the system’s execution, even though
the mining rate may fluctuate wildly. We cannot directly measure the values n,
t, and q, but we can sample η by taking observations now and then, and making
adjustments to T accordingly. If η is too large, this means that blocks are arriving
farther apart than we like, so we must increase T to make mining easier. If η is too
small, this means that blocks are arriving close together, so we must decrease T to
make mining harder.

As mining is a stochastic process, it can happen that a block here and there
may arrive quickly or slowly simply by chance, not having to do with the actual
underlying mining rate. Therefore, we will not recalibrate our system every time
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a block arrives. Instead, we’ll choose a somewhat large number of blocks and
recalibrate the system every this many blocks. We call this number of blocks m,
the epoch duration. Every m blocks, the target T is recalculated based on how
quickly these m blocks arrived. The target T remains the same for the next m
blocks. These m-long chunks of blocks in which the target remains the same are
known as epochs. These epochs are illustrated in Figure 8.9.

Definition 25 (Epoch). Given an epoch duration m ∈ N, an epoch of a chain is
any chunk C[im:(i+ 1)m] for any i ∈ N.

It is desired that each epoch takes ηm time to complete. By measuring how
much time it actually took to complete, we can proportionally adjust the target T .
However, we cannot do this by simply measuring when we locally received a block,
because different nodes may disagree about the time at which they received the
block. Instead, we use the chain itself to reach consensus about when a block was
produced. We augment our block structure by adding one more field to it: The time
r at which it was generated. Our block format now looks like this: B = s∥x∥ctr∥r.

epoch 0

G

0 1 2 m - 1 m 2m - 1 2m 3m - 1 3m 3m + 1 3m + 2

epoch 1 epoch 2 epoch 3

time difference

Figure 8.9: Epochs of m blocks in which difficulty remains fixed. Squiggly lines
illustrate that some blocks have been omitted from the figure.

Given this new block format, we can now adjust our difficulty at the first block
of every epoch, namely when a block’s height is divisible by m. For each i with
i ≡ 0(modm) marking the beginning of the epoch, we look at C[i].r, the timestamp
reported at the beginning of the next epoch, and compare it against the timestamp
C[i −m].r, the timestamp at the beginning of the previous epoch. The difference
C[i].r − C[i − m].r marks the actual time the epoch reportedly took. This must
be compared to the value ηm, the expected time the epoch should have taken.
Calculating the ratio between the two gives us the target for the jth epoch:

Tj = Tj−1
C[jm].r − C[(j − 1)m].r

ηm

This process is known as difficulty adjustment or target recalculation. If the
actual time is larger than the expected time, the difficulty is decreased. If the
actual time is smaller than the expected time, the difficulty is increased.

Lastly, we need to ensure that the r written on a block is somewhat accurate.
We do this by ensuring that the chain is temporally consistent, which involves
performing the following checks. Given a chain C:

1. For all i, check that C[i].r ≤ C[i+ 1].r, i.e. timestamps are non-decreasing.

2. Check that C[−1].r is not in the future by comparing it to the local clock.
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The last check may cause a block to be rejected if the receiving party has a clock
that is slightly off. This is fine, because the party will receive the block again later
from others as it is rebroadcast through the network. These two checks are added
to the chain validation procedure.

These two simply checks make the timestamps reported on the chain quite
accurate. A minor adversary cannot lie about timestamps significantly. Due to
the unfavorable conditions of the Nakamoto race against the minor adversary, the
adversary cannot mine on top of a very old block. The adversary can only mine on
top of a recent block. Specifically, it only makes sense for the adversary to mine on
top of a block in C[−k:], because any attempt to mine on top of older blocks will
be in vain if k Common Prefix holds. This means that the adversary has a very
small wiggle room about fraudulently reporting timestamps: She can only place
her timestamp between C[−k].r and the current timestamp. This means that the
adversary can have a small adverse effect on the difficulty recalculation, but this is
not particularly significant. These small timing variations are not very important,
because such errors can already happen in the system as it is. One reason for
this is the stochastic nature of proof-of-work. The second reason is that the minor
adversary can already cause the mining rate to fluctuate by close to a factor of 2
by simply turning her mining power on and off. Therefore, small timing variations
in difficulty recalculation are not very important. It’s the big picture that counts.
This means that the value η should be calculated to be large enough so that, even
under these small fluctuations (which can range to more than a factor of 2) should
not affect safety.

At this point, it should be clear that η must be chosen to be significantly larger
than ∆ to achieve a good density of convergence opportunities. We will calculate
good values for η (or, equivalently, its inverse f = 1

η ) precisely in the next few
chapters.

Problems
TBD

Further Reading
While it is folklore belief that a cryptocurrency can remain incentive-compatible
when payouts consists only of block rewards and no fees, this belief is actually
false. This was studied in the paper On the Instability of Bitcoin Without the Block
Reward [8].

The field of optimizing miner strategies was pioneered by two works, Clockwork
Finance [5] and FlashBoys 2.0 [10]. These gave rise to the concept of MEV, or
Miner Extractable Value, and gave rise to a whole industry of searchers, builders,
and proposers, allocating different roles to the different portions pertaining to this
optimization problem. The most popular platform in the field currently concerning
itself with such optimizations is FlashBots.

The taxonomy of various wallets was studied in A Taxonomy of Cryptocurrency
Wallets [21], where various types of wallets are described. The security of hardware
wallets is analyzed in A Formal Treatment of Hardware Wallets [4].
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The way keys are generated from seeds depends on the particular blockchain.
The first blockchain to use seeds was Bitcoin. The structure that Bitcoin uses is
complex and is described in technical detail in the standards BIP32 [35], BIP39 [28],
and BIP44 [27].

The target recalculation formula given in this chapter is a simplified version of
the real formula. The real formula contains a clamping parameter. Constructing
a variable difficulty protocol is not a simple matter. There are insidious attacks
that can appear. One prominent such attack is due to Bahack [6]. For the detailed
analysis of the security of the variable difficulty protocol, consult the seminal work
The Bitcoin Backbone Protocol with Chains of Variable Difficulty [15].
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Chapter 9

Accounts DRAFT

In our treatment so far, we have dealt with the UTXO model. There, the state
that we maintained was the UTXO set, and transactions expressed a transition
from one UTXO set to the next by updating it appropriately (adding and removing
elements from it). By ordering the transactions into a ledger using a blockchain,
we achieved consensus on a mutually shared state between mistrustful participants,
among which an honest majority assumption holds. The machinery we have created
solves the State Machine Replication problem.

However, the machinery that we used to achieve consensus, namely the block and
the chain, was quite separate from the semantic interpretation of the transactions
that are confirmed in the produced ledgers. During the block validation process,
we asked the full nodes to validate transactions by ensuring that the UTXO set can
appropriately transition from one state to the next.

Certain aspects of the validation concern the consensus layer, which pertains to
checking the consensus contents of blocks: The ancestry relation, the genesis block,
the proof-of-work, the timestamps, the difficulty adjustment mechanism. These
checks pertain to the structural validation of blocks.

st0 st4 

tx1 tx2 tx3 tx4

st1 st2 st3

Figure 9.1: Transitioning state by applying transactions.
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9.1 Accounts Model
9.1.1 Accounts Model Compared with UTXO Model
Recall the previous UTXO model: we store a set of unspent transaction outputs
(UTXOs). When a transaction occurs, UTXOs corresponding to the transaction’s
inputs are removed and UTXOs corresponding to the transaction’s outputs are
added into the UTXO set to produce a new UTXO set, as shown in Figure 9.2.

UTXO Set

State 0

UTXO Set

State 1

UTXO Set

State 2

tx tx

Figure 9.2: State transitions in the UTXO model

The accounts model is another model of transactions. In the accounts model,
transactions contain 1) the account that sends balance (from), 2) the account that
receives balance (to), 3) the value of the transaction (val), 4) the transaction fee
(fee), and 5) the signature on the transaction (σ).

From To Val Fee σ

Figure 9.3: Structure of a transaction in the accounts model

For the accounts model, the state is maintained by accounts (public keys) and
balances, as shown in Figure 9.4 and Figure 9.5.

Balances

State 0

Balances

State 1

Balances

State 2

tx tx

Figure 9.4: State transitions in the accounts model

The function that takes in a state and a transaction and returns a new state is
called a transition function. It has a general form of:

δ(st, tx) =

{
st′ if tx valid w.r.t. st

⊥ otherwise
(9.1)

Specifically, the transition function of UTXO model is given by:

δUTXO(st, tx) =

{
st \ txin ∪ txout if tx valid w.r.t. st

⊥ otherwise
(9.2)

Where txin is the set of unspent outputs in the “inputs” field of tx, and txout

is the set of newly generated outputs in the “outputs” field of tx.
The transaction validation process of UTXO model is

- Check σ

- Check conservation
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Balances State
Alice 5 bu
Bob 100 bu

Dionysis 1 bu

Figure 9.5: Balance State

- Check inputs are in st

Similarly, the transition function of the accounts model could be written as:

δacc(st, tx) =


st′ where st′[tx.from] = st[tx.from]− tx.value,

st′[tx.to] = st[tx.to] + tx.value, if tx valid w.r.t.
st

⊥ otherwise
(9.3)

The transaction validation process of the accounts model is

- Check σ

- Check st[tx.from] ≥ tx.value

9.1.2 Accounts Model Replay Attack
Here comes a problem. In the accounts model, if the same transaction is sent to
the network twice, should the second transaction be included or not? For example,
one morning, Bob bought a cup of coffee from Starbucks. The next morning, he
bought a cup of coffee again. These two transactions have the same fields, even the
signature.

If the network decides to accept transactions that are the same, the following
replay attack could happen: an adversarial coffee shop could replay the transaction
even if Bob didn’t buy a coffee. However, if the network decided not to include
transactions that are same, then Bob could only buy a coffee once.

The solution is to add a nonce field to transactions. The nonce is an 256-
bit integer per source account which is incremented every new transaction. The
transaction structure now looks like Figure 9.6.

From To Val Fee nonce σ

Figure 9.6: Structure of tx in accounts model

And therefore, while validating transactions, an additional step of validating the
nonce should be included. Transactions in which the nonce has already been used is
rejected. This means that the state contains the current nonce for each account, in
addition to the balance. The state transition function must also update the nonce
for the “from” account of the transaction.

A side by side comparison between the two models of transactions is shown in
Figure 9.7.
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UTXO Accounts
Real System Bitcoin Ethereum

Transaction tx tx From To Val Fee nonce σ

Transistion δ
Remove consumed out-
puts and add produced
outputs

Update balances
st′[from] := st[from]− value

st′[to] := st[to] + value

Validation Signature, Law of Conser-
vation, Inputs exist in st.

Signature, Sufficient balance, Nonce
unique.

Genesis State ∅ {}

Figure 9.7: Side by Side Comparison of Two Models

9.2 State Machine Replication
We talk briefly about State Machine Replication (SMR). A state machine consists
of a state, inputs and a transition function. The machine has an initial state. Based
on its inputs and the state transition function, the machine updates its state. In
SMR, multiple nodes in the network run a state machine in a distributed manner.
The term “replication” signifies that each node in the network maintains the state
of the machine and runs its transition functions locally. The goal of SMR is that
each node runs the same set of state transitions and in the same order so that there
is agreement or consensus on the state of the machine.

A blockchain can be considered as a distributed replicated database. A block-
chain can help us run SMR. We have seen two examples of state machines that the
blockchain can run — the accounts model and the UTXO model. In both cases,
there is a state st, state transition functions δ, and inputs (which are transactions
in this case). The initial state is specified by the genesis state.

9.3 Light Clients
How to run a blockchain node efficiently? Efficiency has multiple dimensions: stor-
age, communication, and computation. For most application scenarios, the block-
chain node has limited resources. For example, if we store all the data of the chain,
it would take gigabytes of storage. Validating every transaction in the network
would be very heavy work for a phone. Therefore, a light client is needed for these
resource-limited nodes.

9.3.1 Storage Efficiency: Merkle Trees
For a light client, it is better to save the data at a server and retrieve data at usage.
However, we need to prove the integrity of the retrieved data. Hash functions are
useful in this case. Suppose that we wanted to store a file on a server and verify
that we receive the correct file from the server. We could hash the file and store the
hash (checksum) locally. When we request files from the data server, we validate
the checksum of the retrieved file to verify that it is the exact file we saved on
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the server. However, this requires clients to retrieve the entire file to validate its
integrity even if only a 1 kilobyte chunk is needed.

We can also split the file into chunks and hash each chunk. This reduces the
communication complexity: clients only need the chunk to be transferred. However,
this requires more hash key storage for the client. The client needs to store one
hash per chunk, making the storage complexity linear in the size of the file. There is
a trade off between communication complexity and storage complexity: with large
chunks, comes high communication complexity and with small chunks, comes high
storage complexity.

Our goal is to achieve low storage and low communication. Specifically, storage
with O(1) complexity and communication with O(log n) complexity where n is the
number of chunks of the file. And this is done with a data structure called Merkle
tree.

9.3.2 Data Structure: Merkle Tree
Files are split into n data chunks.

D : D[0], D[1], ..., D[n− 1]

A binary tree of depth µ is created, where there are 2µ = n leaves (for simplicity,
assume that n is a power of 2). Each node in the binary tree stores a hash h which
is the hash of its children concatenated.

h := H(h[left] ∥ h[right])

Nodes on the leaves store the hash of the corresponding data chunk. The client
stores the Merkle tree root (MTR) hϵ. When a data chunk is requested, the server
sends the data chunk, along with every sibling hash value to the clients as shown
in Figure 9.8. For example, when data chunk at index j is requested, the server
sends D[j], π0, π1, π2, and π3 to the client. The client walks from the received
data chunk all the way up to the root to check if the hash values are intact. From
calculating e0 by hashing the data chunk, to the top level eµ+1, the client calculates
ek = H(ek−1 ∥ πk−1) or ek = H(πk−1 ∥ ek−1)(left child first). In this example,
the client computes the values e0 = H(D[j]), e1 = H(e0 ∥ π0), e2 = H(π1 ∥ e1),
e3 = H(e2 ∥ π2), and e4 = H(π3 ∥ e3) and then compares e4 with hϵ.

With this data structure, the data transferred is a list of π values and the data
chunk of fixed size, which gives |π| = O(log n) succinct communication and O(1)
constant storage.

The Merkle tree structure is described by the functions

compress(D)→ hϵ, (9.4)
prove(D, j)→ π, and (9.5)

verify(hϵ, d, j, π)→

{
true if valid
false otherwise

. (9.6)

The correctness of the Merkle tree is specified as:

∀D, ∀j, verify(compress(D), D[j], j, prove(D, j)) = true (9.7)
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hϵ

π3

H(...)

H(H(D[0]) ∥H(D[1]))

H(D[0])

D[0]

H(D[1])

D[0]

...
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e3

e2

π1

... ...

e1

e0

D[j]

π0

...

π2

... H(...)

... H(D[n− 1])

D[n− 1]

e4

Figure 9.8: Merkle Tree

9.3.3 Security of Merkle Trees
MT-security means that if the client outputs true after verifying the received data
chunk and proof, then the received data must be the same data that was originally
stored. To define security of Merkle trees formally, we create the following game
that lets an adversary try to break the protocol.

MERKLEA(κ) :
D,π, j, d ← A(1κ)
re turn verify(compress(D), d, j, π) ∧ d ̸= D[j]

Our goal is to prove that

∀ PPT A : Pr[MERKLEA(κ) = 1] ≤ negl(κ)

Theorem 9. Let H be a collision-resistant hash function. Then Merkle trees
constructed with H are MT-secure.

Proof. Suppose for contradiction, A breaks MT-security. We will construct an
adversary A′ that breaks collision-resistance of H.
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A
MT

A′ H
1κ

D, j, d, π

1κ

x1, x2 s.t. x1 ̸= x2 ∧H(x1) = H(x2)

We use e for the hash value calculated by the client, h for the expected hash
value in the correct Merkle tree, and π for the hash values returned by the server.

Consider the event that A succeeds, i.e. verify(compress(D), d, j, π) = 1 ∧ d ̸=
D[j].
A′ works as follows:
Given that A succeeds, the returned list of π is used to calculate hashes of

the nodes to verify the returned data chunk, which involves calculating e values by
concatenating the children of the nodes. The hash of the root is the same (hϵ = etop)
and the hash of the data chunk is different (e0 ̸= h0). (If not, A′ has already found
a collision because different data chinks have the same hash.) Therefore, there must
exists a node, some level k in the tree, such that ek = hk but its children ek−1 or
πk−1 not equal to the expected h values. (These must exist because roots are the
same, but leaves are different). In this case, we have two different inputs that hash
to the same value.

Then, adversary A′ returns children of ek from the verifier tree at level k as x1

and children of hk from real tree at the corresponding position as x2. Then, x1 and
x2 satisfy x1 ̸= x2 ∧H(x1) = H(x2).

Therefore, the probability of breaking the Merkle tree protocol is the same as
the probability of breaking the collision-resistant hash function H.

Pr[MERKLEA(κ) = 1] = Pr[CollisionA′(κ) = 1]

But Pr[CollisionA′(κ) = 1] is negligible by assumption, which means the prob-
ability of breaking Merkle tree protocol is also negligible.
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Chapter 10

Light Clients DRAFT

10.1 Motivation
Our current model has three main scalability limitations: storage requirements (full
nodes store the entire chain, ∼ 1TB in Bitcoin), communication requirements (full
nodes broadcast, request and download every transaction and block submitted to
the network), and computation requirements (full nodes validate all incoming blocks
and transactions, compute the UTXO set after each block, etc.).

We seek to design a light client (also referred to as a light node) such that it
needs less storage, communicates less with the network, and requires less compu-
tation power. Our design will need only ∼ 100MB of storage, will only download
transactions pertinent to our own address, and will not validate all transactions in
the transaction graph.

Before designing such a node, we also wish to distinguish between full nodes
and miners: full nodes are peers running our protocol (validating blocks and trans-
actions, gossiping new objects, adopting longest chain, etc.), where miners perform
all these tasks in addition to querying for new blocks.

10.2 Definition
To guide our discourse, we will define light clients as nodes on the blockchain net-
work which are able to verify payments to and create transactions from a specified
address, but without downloading the entire blockchain (specifically the transac-
tion graph), and without validating said transaction graph in its entirety. Further,
we will assume that light clients connect only with full node peers, rather than with
other light clients, to ensure the availability of information which is available to any
other full node in the network.

10.3 Header Chains
To solve the storage problem, we introduce block headers. We want our light clients
to be able to interact with the network without downloading the entire blockchain,
and block headers provide a way of maintaining chain virtues, while only needing
to download a subset of the transaction graph.
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Instead of a chain of blocks, each containing a vector of transactions, header
chains are chains of block headers. Block headers are of the format: s||x||ctr, where
s refers to the hash of the previous block header, x refers to the root of the merkle
tree of all transactions in x̄ (the transactions contained in the block), and ctr is the
nonce discovered to satisfy the PoW equation.

While this solves our storage problem, it is not immediately clear how a header
chain can be used to verify transactions (as the header contains no actual trans-
action hashes). However, as the block header contains x, light nodes may request
merkle proofs π from their full node peers for the inclusion of pertinent transac-
tions in the chain, which no PPT adversary can create for a transaction which was
not included. Therefore, header chains provide the same guarantees with regards
verification of transaction inclusion.

10.3.1 Block Validation
In order to verify a block in a block header chain, we modify the process slightly
such that a full node must now

1. download the new block header

2. validate the header PoW and ancestry

3. download the block body

4. check the block body validity—transaction set validity and merkle tree valid-
ity.

10.3.2 Benefits
Header chains provide mitigate all three of our limitations listed above.

Unlike blocks, whose size depends on the number of transactions it contains,
block headers have an lower-bounded size of 3κ, each κ coming from each hash
being concatenated to make the block header. This enables the block header to be
significantly more compact than a block, and solves the problem of storage for light
clients which don’t wish to download the entire transaction history. We say that the
size is lower bounded because implementations may choose to include additional
metadata in the block header. Thus, the minimum storage requirements for a light
client is reduced from O(h|x̄|) to O(hκ), where h is the height of the longest chain.

Since each block header is much smaller than an entire block, there are also
computational benefits for both light and full nodes, as well as the network as
a whole. This is because the computational complexity of calculating H(B) is
O(|B|). As block headers are much smaller than blocks, this provides significant
computational benefits in verifying PoW for both light and full nodes. This also
allows light nodes to verify PoW without verifying the validity of the transactions
in x̄, which is left to the full nodes to compute. Finally, as H(B) takes O(3κ) rather
than O(|x̄|) computational power to compute, full nodes are no longer incentivized
to mine smaller blocks, which would have previously increased their hash rate.

In addition to these benefits, as light nodes only need to request the block
header chain and a subset of all transactions, rather than the entire block chain
and transaction graph, header chains allow light nodes to make significantly fewer
requests to their full node peers, and for those requests to result in much smaller
and shorter responses.
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10.4 Making Payments
A core function of the light client is interacting with the block chain to make and
receive payments concerning only itself. Thus, light clients interact with a sub-
graph of the network and rely on full nodes to receive the UTXOs belonging to
it. A light client can then use these UTXOs to pay other addresses, sign such a
transaction, and broadcast it to the network for validation and inclusion in the
chain.

To build this subgraph of UTXOs, light clients must be able to make requests
to full node peers for all UTXOs in the transaction graph that are owned by a
given address (in this case, the address-of-interest of the light client itself). Fur-
thermore, they must request a merkle proof from these peers for the inclusion of
these transactions in the chain, which we know cannot be counterfeited by a PPT
adversary. This reliance on full node peers to provide the transaction sub-graph
poses no security risks under the non-eclipsing assumption, as an honest node will
provide all transactions-of-interest to a requesting peer.

10.5 Block Header Validation
Light clients do not validate blocks. Instead, they validate only the block headers,
and follow only valid header chains, without ever downloading the block itself. As
a result, for a light client to verify and validate an incoming block header, the
validation steps are a further modification (compared to the full node) of the usual
process. Specifically, light clients must do the following.

1. download the new block header

2. validate the header PoW and ancestry

3. request the subset of transactions relating to their address (in case any new
pertinent transactions are in this new block)

4. request proofs of inclusion for any of these relevant transactions which are in
the new block (older transactions should already have been verified).

10.5.1 Transaction Validation
While light nodes can download header chains and verify each header (PoW and
ancestry checks), they cannot validate transactions constituting the block corre-
sponding to that block header. This is because light nodes are unaware of the
entire transaction graph, and more specifically the current UTXO set. Without the
UTXO set, a light node is unable to determine whether a transaction’s inputs are
valid. Furthermore, light nodes do not download transactions which are not perti-
nent to them, which means they are also unaware of the validity of said transactions.
We will now see how an adversary might exploit this fact.

10.5.2 Local Chain Security
Common Prefix is still guaranteed for honest-majority networks (specifically, net-
works where a majority of the mining power is honest), as the PoW requirements
on header chains ensure that each header in the chain is a successful query. As a
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result, finding a valid block header is just as difficult as finding a valid block, so no
minority adversary can outpace the honest nodes in the network. However, there
are some security risks for the light client in the event of a dishonest majority.

While no PPT adversary can create a proof π that some transaction is included
in the chain when it is not, a dishonest majority might create an invalid chain
(containing double spends, invalid coinbase transactions, etc.) which grows longer
than the longest honest chain. While no full node will accept the adversary’s
invalid chain, light clients validate only PoW and ancestry of the block header,
and therefore would accept such an invalid chain. Preventing such an adversarial
majority attack would require verifying the entire transaction graph. However, since
light nodes do not contribute blocks to the chain, there are no security concerns for
the network at large in this situation, and any invalid transactions submitted by
the compromised light client would not be validated nor included in the competing
honest chain. So long as the adversary’s majority is transient, the light client’s risks
are also transient.

10.5.3 Privacy
As a light clients requests transactions relating only to its own address, it must
reveal its public key to the full node(s) from whom it is receiving the transactions.
This is a privacy compromise made for the sake of efficiency, although there are
some ways to mitigate this risk (e.g. bloom filters, as used in the Bitcoin network).

10.5.4 Full Node Ramifications
On the topic of light clients making requests to their full node peers, honest full
nodes must be able to provide all transactions which relate to the requested address.
Therefore, they must store some type of mapping from public key addresses to
sets of pertinent transactions, adding some complexity to the full nodes’ protocol
implementation.

10.6 Light Miners and the Quick Bootstrap Pro-
tocol

We will now explore whether light nodes can be miners in the network, and what
modifications to our protocol are necessary for enabling this.

10.6.1 Mining as a Light Client
A naive approach to light client mining would be to bootstrap as normal, and
then accept transactions into a mempool before including them in a block and
broadcasting that block to the network.

However, mining as a light client is complicated by light clients’ inability to
validate transactions. The necessary information for validating transactions is the
transaction graph of the entire blockchain, or more specifically the UTXO set after
execution of the most recent block. Normally, the UTXO set is computed in the
process of validating the full transaction graph of the blockchain. But, to allow for
light clients (or nodes which do not download the full transaction history of the
chain) to mine, we modify our block header structure to be s||x||ctr||st. We define
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st as the merkle root of the merkle tree made of all UTXOs in the UTXO set after
executing the block, which we will call s̄t. That is, st is the merkle root of the
merkle tree containing all necessary information for validating transactions which
come after the execution of the current block.

This state commitment st should also be validated by full nodes, in the process
of validating the block body x̄. This can be done either by downloading the full
state s̄t from a peer and comparing with the result from one’s own execution, or
by executing the transactions x̄ and then calculating a merkle root based on the
resulting UTXO set, which is compared with st.

We will use this new block header definition in outlining our quick bootstrap
protocol for light miners.

10.6.2 Quick Bootstrap Protocol
We can construct a quick bootstrap protocol by making use of the state commitment
st in each block header. This commitment in a given header can be used to download
and verify the UTXO set after the execution of the corresponding block. By relying
on st, a light miner can avoid downloading x̄ for all blocks which were mined before
they joined the network, while still being able to validate transactions based off of
the most recent state.

Therefore, our quick bootstrap protocol differs from the regular full node boot-
strap protocol in that it does not have the light miner validate the entirety of the
transaction graph, but only the portions of the graph which are included after the
light miner boots. Further, only transactions included in blocks after the light
miner boots need to be executed, greatly simplifying the boot process.

The protocol is as follows:

1. download and validate the header chain

2. download the state s̄t of the chain tip and validate the merkle tree

3. accept transactions into the mempool and form valid transactions into a block
(validated using the state s̄t)

4. mine the header of this block off of the chain tip of the longest chain

5. when new blocks are announced, validate as normal (download the block
header, validate, download x̄, validate, etc.).

We can see that this protocol does not require the downloading of any portion of
the transactions x̄ of any block already included in the chain at the time of booting,
in keeping with our usage of “light” with respect to light clients.

10.6.3 Light Miner Security
Since light miners do not validate any transactions that were on the blockchain
before they booted, they are liable to begin mining off of an invalid chain tip, po-
tentially contributing their hashing power to the adversary’s chain. We rely upon
the Common Prefix guarantee of the chain to avoid this, by starting with block
C[−k] to begin our full validation of the blockchain—where we accept C[−k] as
being the tip of a valid chain—and validating the k most recent blocks (download-
ing and validating x̄) of the longest chain which follow. This ensures that the light
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miner accepts only valid longest chains, by starting with the end of the commonly
valid portion of the chain.

Properties of Full Node, Full Miner, and Light Node
Properties Miner Full Node Light Node
Download Header ✓ ✓ ✓
Download Body ✓ ✓
Create Blocks ✓
PoW Check ✓ ✓ ✓
Check Tx Validity ✓ ✓
Size ∼ 1TB ∼ 1TB ∼ 100MB
Honest Majority n−t

n

129



Chapter 11

Security in Earnest I DRAFT

We have spent the previous chapters developing our intuition about blockchain
systems and why they work. In this chapter and the next couple of chapters, we
will formalize the notion of security and prove that blockchains are secure. We
start by making a few things more precise, beginning with our hash function and
the notion of time. Once we have specified these, we will describe the environment
that the parties operate in. This will make precise the concept of a Sybil adversary
and the non-eclipsing assumption, among other things. Next, we will write out the
protocol of the honest parties as exact pseudocode. We will move on to formally
prove the three chain virtues we explored intuitively: Chain Growth, Common
Prefix, and Chain Quality. Finally, we will formally show that ledger virtues follow
from chain virtues.

11.1 Random Oracle
In Chapter 4, we argued that the hash function behaves like a random oracle and
that Pr[H(B) ≤ T ] = p = T

2k
. Let us now make the random oracle model more

precise. We want the hash function to return a uniformly randomly chosen κ-bit
value whenever it is invoked with a fresh input. However, in order for it to be a
function, we want it to return the same value when it is invoked again with the same
input. The random oracle is a shared functionality among all honest parties: If two
different parties invoke it, the oracle must answer consistently. This is illustrated
in Algorithm 15. This consistency between different parties and multiple queries
is necessary so that if a party successfully mines a block, every other party will be
able to verify that this mining was successful.

Algorithm 15 The Random Oracle model.
1: T ← {}
2: function H(B)
3: if B ̸∈ T then
4: y

$← {0, 1}κ
5: T [B]← y
6: end if
7: return T [B]
8: end function
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The oracle keeps track of the randomnesses it has generated in a dictionary T .
If the key B queried has been queried before, the random oracle returns the cached
value T [B]. Otherwise, the oracle generates a uniformly random κ-bit string, caches
it in the T dictionary for future use, and returns it.

11.2 Synchrony
Until now, we considered time as continuous. We will now follow a synchronous
model where time is broken up into rounds, each round lasting a discrete time ∆.
Additionally, we will consider the network delay to be precisely ∆. This implies
that any message broadcast by an honest party at some point during the round r
will be received by every honest party at the start of round r + 1, all at exactly
the same moment.

This model synchronizes the arrival of messages such that they all arrive at the
boundary of each round, and lets us discretize time by eliminating complexities of
network distance and speed. Furthermore, the execution of our network entities is
simplified to a “lockstep execution” model, where we can easily predict when any
node will receive a given message, which will be precisely one round after it was
broadcast.

11.3 The Simulation Environment
In order to rigorously define properties of our blockchain and give security proofs,
we need to precisely define how we will simulate our environment: the setup and
how each round happens.
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Algorithm 16 The environment and network model running for a polynomial
number of rounds poly(κ).

1: r ← 0
2: function Zn,t

Π,A(1κ)
3: G $← {0, 1}κ ▷ Genesis block
4: for i← 1 to n− t do ▷ Boot stateful honest parties
5: Pi ← new ΠHκ,i(G)
6: end for
7: A←new AHκ,0(G, n, t) ▷ Boot stateful adversary
8: M ← [] ▷ 2D array of messages
9: for i← 1 to n− t do

10: M [i]← [] ▷ Each honest party has an array of messages
11: end for
12: while r < poly(κ) do ▷ Number of rounds
13: r ← r + 1
14: M ← ∅
15: for i← 1 to n− t do ▷ Execute honest party i for round r
16: Q← q ▷ Maximum number of oracle queries per honest party

(Section 2)
17: M ←M ∪ {Pi.executeH(M [i])} ▷ Adversary collects all messages
18: end for
19: Q← tq ▷ Max number of Adversarial oracle queries
20: M ← A.executeH(M) ▷ Execute rushing adversary for round r
21: for m ∈M do ▷ Ensure all parties will receive message m
22: for i← 1 to n− t do
23: assert(m ∈M [i]) ▷ Non-eclipsing assumption
24: end for
25: end for
26: end while
27: end function

11.3.1 A Simplification: Quantize Time
Notice that we are running the simulation in rounds (line 12). In the real world,
time is continuous, however by breaking down the simulation into short rounds,
it makes it much easier to define and prove security properties of our blockchain.
Furthermore, it makes it easier to define the properties of our adversary as seen
below.

11.3.2 Rushing Adversary
In this environment, we are assuming a Rushing Adversary. This is because every
round (lines 12-26), we first simulate the honest parties independently - they do
not see the messages produced by each other that round - (lines 15-19), collect all
the messages on the gossip network (line 17), then run the adversary with all the
gossiped messages (line 20).
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11.3.3 Sybil Adversary & Non-Eclipsing Assumption
The adversary sees the messages gossiped by each honest party before the other
honest parties. The adversary then has the power to manipulate what messages
the honest parties will see next round in the following way

1. The adversary can inject new messages

2. The adversary can reorder messages

3. The adversary can introduce disagreement

4. The adversary cannot censor messages (lines 20, 21, 22)

The fourth point is due to the Non-Eclipsing Assumption: since there is a path of
honest parties between any two honest parties, and each honest party follows the
algorithm detailed in section 3, we know that an honestly produced message will
be propagated to all honest parties on the next round.

11.4 Random Oracle Model
In the simulation algorithm, for both the honest parties and adversarial parties we
write executeH (lines 17, 20). This means that we model the hash function as a
random oracle and give both the honest and adversarial parties Black-Box access to
the oracle. This means that for any ”new” input, the output is queried uniformly
at random from the output space (line 10) and returned. Furthermore, when an
input is queried for the first time, it is stored in a cache (stored in T ), therefore if
the same input is later queried, the value is looked up in the cache and returned
(line 12). Black-Box access means that the parties do not have access to the cache
or the random sampling algorithm. They can only submit a query x and receive a
response T [x].
Secondly, in order to model the hash rate, we give each party a maximum number
of oracle queries per round. Each honest party receives q queries, and the adversary
receives qt queries. (line 3, 9).
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Algorithm 17 The Hash Function in the Random Oracle Model
1: r ← 0
2: T ← {} ▷ Initiate Cache
3: Q← 0 ▷ q for honest parties, qt for adversary
4: function Hκ(x)
5: if x ̸∈ T then ▷ First time being queried
6: if Q = 0 then ▷ Out of Queries
7: return ⊥
8: end if
9: Q← Q− 1

10: T [x] $← {0, 1}κ ▷ Sample uniformly at random from output space and
store in Cache

11: end if
12: return T [x] ▷ Return value from Cache
13: end function

11.5 Honest Party Algorithm
Below is a class of algorithms belonging to an honest party.

The first algorithm is a constructor.

The second algorithm is used to simulate every honest party that mines during
each round of the protocol. In this simulation, every honest party follows the
longest chain rule, at the beginning of each round they adopt the longest, valid
chain (line 8). If they learn about a new chain that is longer then their current one,
they gossip it (line 9,10). The honest party then tries to mine a block using the
transactions in their mempool (line 12, 13). If a block is successfully mined, the
honest party will gossip it.

The third algorithm is used to extract all transactions from a blockchain. This
is useful when validating a new chain as we need to check all transactions start-
ing from the genesis state to ensure that there are no invalid transactions and to
maintain an up-to-date UTXO set.
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Algorithm 18 The honest party

1: G
2: C ← [ ]
3: function Constructor(G′)
4: G ← G′ ▷ Select Genesis Block
5: C ← [G] ▷ Add Genesis Block to start of chain
6: round ← 1
7: end function
8: function Execute(1κ)
9: M ← ∅

10: C̃ ← maxvalid(C, M̄ [i]) ▷ Adopt Longest Chain in the network
11: if C̃ ̸= C then
12: M ← {C̃}
13: C ← C̃
14: end if
15: x← Input() ▷ Take all transactions in mempool
16: B ← PoW(x, C̃)
17: if B ̸= ⊥ then ▷ Successful Mining
18: C ← C ∥B ▷ Add block to current longest chain
19: M ←M ∪ {C}
20: end if
21: round ← round+1
22: return M
23: end function
24: function Read
25: x← [ ] ▷ Instantiate transactions
26: for B ∈ C do
27: x← x ∥ C.x ▷ Extract all transactions from each block in the chain
28: end for
29: return x
30: end function

11.6 Proof-of-Work
The algorithm below is run by miners to find a new block. Notice that all parties
(adversarial and honest) have a maximum number of q queries per round. This
is to model the hash rate of parties. Furthermore, we construct a block as the
concatenation of the previous block s, the transactions x, and the nonce ctr. For a
block to be mined successfully, we require that H(B) ≤ T , where T is the mining
target. Due to the size of the space {0, 1}κ, the probability of two parties mining
with the same nonce is negligible, therefore we may assume that there are no “nonce
collisions”.
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Algorithm 19 The Proof-of-Work discovery algorithm
1: function powH,T,q(x, s)
2: ctr

$← {0, 1}κ ▷ Randomly sample Nonce
3: for i← 1 to q do ▷ Number of available queries per party
4: B ← s||x||ctr ▷ Create block
5: if H(B) ≤ T then ▷ Successful Mining
6: return B
7: end if
8: ctr← ctr + 1
9: end for

10: return ⊥ ▷ Unsuccessful Mining
11: end function

11.7 Longest Chain
This algorithm is run by honest nodes in order to adopt the longest chain each
round. Since every honest node abides to the longest chain rule, the conditions are
required for a chain to be adopted: the chain is valid and the chain is strictly longer
(line 4). This algorithm is called in line 2 of the honest party algorithm: it will
loop through every chain it received through the gossip network, check its validity
and check that it is longer than the currently adopted chain.

Algorithm 20 The maxvalid algorithm
1: function maxvalidG,δ(·)(C)
2: Cmax ← [G] ▷ Start with current adopted chain
3: for C ∈ C do ▷ Iterate for every chain received through gossip network
4: if validateG,δ(·)(C) ∧ |C| > |Cmax| then ▷ Longest Chain Rule
5: Cmax ← C
6: end if
7: end for
8: return Cmax
9: end function

11.8 Validating a block
This algorithm is used to validate a block, it is called in line 4 of the longest chain
algorithm run by honest parties. The algorithm first checks that the Genesis block
the chain is correct (line 2). Then for every block in the chain, the algorithm
will update the UTXO, checking that each transaction is valid (lines 13-16). The
algorithm will also check the PoW for each block and check that the block is in the
correct format of s||x||ctr (lines 9-12)
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Algorithm 21 The validate algorithm
1: function validateG,δ(·)(C)
2: if C[0] ̸= G then ▷ Check that first block is Genesis
3: return false
4: end if
5: st ← st0 ▷ Start at Genesis state
6: h← H(C[0])
7: st ← δ∗(st, C[0].x)
8: for B ∈ C[1:] do ▷ Iterate for every block in the chain
9: (s, x, ctr)← B

10: if H(B) > T ∨ s ̸= h then ▷ PoW check and Ancestry check
11: return false
12: end if
13: st ← δ∗(st, B.x) ▷ Application Layer: update UTXO & validate

transactions
14: if st = ⊥ then
15: return false ▷ Invalid state transition
16: end if
17: h← H(B)
18: end for
19: return true
20: end function

11.9 Chain Virtues
Equipped with this new rigorous definition of the environment, our assumptions
and the algorithm ran by the honest party, we can now mathematically define the
Chain Virtues, introduced earlier in the lectures.

1. Common Prefix (κ). ∀ honest parties P1, P2 adopting chains C1, C2 at any
rounds r1 ≤ r2 respectively, Common Prefix property C1[: −κ] ≤ C2 holds.

2. Chain Quality (µ, ℓ). ∀ honest party P with adopted chain C, ∀i any chunk
C[i : i+ ℓ] of length ℓ > 0 has a ratio of honest blocks µ.

3. Chain Growth (τ, s). ∀ honest parties P and ∀r1, r2 with adopted chain
C1 at round r1 and adopted chain C2 at round r2 ≥ r1 + s, it holds that
|C2| ≥ |C1|+ τs.

We define a round during which one or more honest party found block as a
successful round (r). A round has a convergence opportunity(r) if only one
honest party found a block irrespective of adversarial parties.

11.10 Pairing Lemma
Lemma 10. Let B = C[i] for some chain C s.t. B was computed by an honest
party P during a convergence opportunity r. Then for any block B′ at position i of
some other chain C ′, if B ̸= B′, then B′ was adversarially computed.
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Proof. Suppose for contradiction that B′ was mined on a round r′. For the sake of
contradiction, assume that B′ was honestly computed. Thus, we need to analyze
three following cases:

1. Case 1: r = r′. This is not possible as round r was a convergence opportunity.

2. Case 2: r < r′. This is not possible as due to the longest chain rule, after
round r, everybody will have adopted a chain of at least i blocks, so honest
parties would not accept B′.

3. Case 3: r > r′. This is not possible, same as above but this time honest
parties wouldn’t adopt block B.

So we have a contradiction, thus, B′ must have been adversarially mined.

From the above, we note that, if the adversary wants to displace block B, she
has to pay for it by mining B′. Therefore, if the adversary does not mine a block,
then the convergence opportunity will be a true honest convergence.

11.11 Honest Majority Assumption (n, t, δ)
We will now give a new definition of the honest majority assumption by introducing
the honest advantage parameter δ . We will see in the next lecture that we need
this parameter in order the chain virtues hold for Bitcoin. We say that the honest
majority assumption holds if t < (1− δ)(n− t).

Problems
11.1 Go back to Lemma 6. Restate it and prove it formally in the model developed

in this chapter.

11.12 Further Reading
Even though Satoshi Nakamoto developed the first blockchain and wrote the paper
about it, he did not prove that blockchains are secure against all adversaries within
that paper. Instead, he showed that Bitcoin is secure against the specific Nakamoto
adversary which we studied in the previous chapters. At a later time, Juan Garay,
Aggelos Kiayias, and Nikos Leonardos wrote the Bitcoin Backbone paper [14]. The
Bitcoin Backbone paper formalizes and proves that blockchains that use Proof-of-
Work are secure. This is the model we have presented in this chapter, with minor
modifications.
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Chapter 12

Security in Earnest II DRAFT

12.1 Safety and Liveness
12.1.1 Defining Safety and Liveness
Now that we have formally defined the synchronous model underlying our block-
chain (in the previous lecture), we now rigorously define the security properties that
a blockchain-based ledger must satisfy, notably, safety and liveness.

A ledger achieves safety when all honest parties have views of the ledger that
are consistent with one another. More precisely, any transaction included in one
party’s ledger at a specific round is also included at the same position in all other
parties’ ledgers at all later rounds. A ledger achieves liveness if whenever honest
parties attempt to add a transaction to the ledger, it gets added to all parties’
ledgers within u rounds.

• Safety: For all honest parties P1, P2, and rounds r1 < r2, ∀i ∈ [|LP1
r1 |], a

transaction reported at LP1
r1 [i] also appears at LP2

r2 [i].

• Liveness(u): If all honest parties attempt to inject a transaction tx at rounds
r, ..., r + u, then for all honest parties P , tx will appear in LP

r+u.

Note that u should be defined so that it is at least large enough that an honest
party successfully creates and broadcasts a block in u rounds, and that block gets
buried under k blocks.

Now that safety and liveness are defined, we will prove how satisfying the chain
virtues common prefix, chain quality, and chain growth implies that safety and
liveness hold.

12.1.2 Common Prefix Implies Safety
Theorem 11. If the longest chain protocol satisfies CP (k), then the resulting ledger
is safe.

Proof. Let C1 be the view of party P1 at round r1, and C2 be the view of P2 at
round r2; where r1 < r2. Because CP (k) is satisfied, the condition C1[: −k] ⪯ C2

must hold. The honest protocol states that for a transaction tx to appear in the
ledger of an honest party, tx must be buried under k blocks in the honest party’s
chain. Therefore, we know that LP1

r1 is made up of the transactions in C1[: −k],
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because C1[: −k] is buried k blocks deep from the longest chain tip. We know that
C1[: −k] ⪯ C2 due to common prefix. Moreover, each block in C1[: −k] must be
buried at least k blocks deep in C2 because the honest node P1 must have broadcast
C1 in or before round r1 and due to the longest chain rule, |C2| ≥ |C1|. Hence, LP1

r1
is a prefix of LP2

r2 . This implies that all transactions in LP1
r1 must also be included

in LP2
r2 at the same positions, and hence safety holds.

12.1.3 Chain Quality and Chain Growth Imply Liveness
Theorem 12. If the protocol satisfies CQ(µ, ℓ) and CG(τ, s) then the ledger satisfies
liveness with u = max( ℓ+k

τ , s).

Proof. Due to the Chain Quality assumption CQ(µ, ℓ), at least one block out of
ℓ consecutive blocks in a chain will be honestly mined if µℓ ≥ 1. Moreover, we
require that for a block to be included in a ledger, it must be buried under k
blocks. Therefore, we know that an honestly mined block is included in the ledger
if we wait for the honestly adopted chains to grow by ℓ + k blocks. Because uτ is
the minimum growth of the honestly adopted chains in u rounds, therefore, if we
want liveness to hold with u, then we require that uτ ≥ ℓ+ k. However, in order to
invoke Chain Growth at all, we need to wait at least s rounds, therefore, the above
only holds if u ≥ s also holds.

Observe that we require both u ≥ s and uτ ≥ ℓ + k in order to guarantee
that an honest block is included in the ledger, therefore liveness must hold with
u = max( ℓ+k

τ , s)

12.2 Proving Chain Growth, Chain Quality, and
Common Prefix

Let Xr ∈ {0, 1}, Yr ∈ {0, 1}, Zr,j ∈ {0, 1}, and Zr =
∑tq

j=1 Zr,j be random variables
to model the events happening at each round r of the blockchain execution. These
quantities will become helpful when we relate them to each other.

• Xr ∈ {0, 1} denotes whether round r was successful. Xr = 1 if at least one
honest party has mined a block at round r, and Xr = 0 if otherwise.

• Yr ∈ {0, 1} denotes whether round r was a convergence opportunity. Yr = 1
if round r is a convergence opportunity and Yr = 0 if otherwise.

• Zr,j ∈ {0, 1} denotes whether the jth query of the adversary A was successful
at round r. Zr,j = 1 if the jth query of the adversary at round r is successful,
and Zr,j = 0 if otherwise.

• Zr =
∑tq

j=1 Zr,j denotes the number of successful queries by the adversary
during round r.

Over an interval of consecutive rounds S:

• X(S) =
∑

r∈S Xr , i.e. number of successful rounds in the interval S

• Y (S) =
∑

r∈S Yr , i.e. number of convergence opportunities in the interval S
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• Z(S) =
∑

r∈S Zr , i.e. number of successful adversarial queries in the interval
S

Note that Xr is not the total number of successful queries at round r, just
whether there is at least one successful honest query. Similarly, X(S) counts the
number of honestly successful rounds in the interval S, not the number of successful
honest queries as there could be multiple successful honest queries in once round.

12.2.1 Chain Growth Lemma
Lemma 13 (Chain Growth Lemma). Suppose that at round r, an honest party P
has a chain of length l. Then by round r′ ≥ r, every honest party has adopted a
chain of length at least l +

∑r′−1
i=r Xi.

Since Xr only indicates whether there is at least one successful honest query, we
do not overestimate chain length by counting multiple honest parties mining blocks
that are forks of each other. Also note that the sum

∑r−1
i=r Xi is defined to be 0.

Proof. We will prove by induction that all parties have chain lengths at round r′ of
at least l +

∑r′−1
i=r for all values of r′ ≥ r.

We will perform a proof by induction on r′. In the base case r′ = r, if an honest
party has a chain C of length l at round r, then that party broadcast C at a round
earlier than r. It follows that every honest party will receive C by round r, and
therefore adopts a chain of length at least |C| = l = l +

∑r′−1
i=r .

For r′ > r, suppose Cr′ is the chain adopted by an honest party. For the
inductive step, suppose |Cr+j | ≥ l +

∑r+j−1
i=r Xi. Consider the following two cases:

1. Case 1: Xr+j = 0. Due to the longest chain rule, |Cr+j+1| must be at
least as long as |Cr+j |, and

∑r+j
i=r Xi =

∑r+j−1
i=r Xi, therefore, it is clear that

|Cr+j+1| ≥ |Cr+j | ≥ l +
∑r+j+1

i=r Xi

2. Case 2: Xr+j = 1. At round r + j all parties have adopted chains of length
|Cr+j |, so due to the longest chain rule, the honest party must have mined
a chain of at least length |Cr+j | + 1 at round r + j. Therefore, |Cr+j+1| =
|Cr+j |+ 1 ≥ l +

∑r+j
i=r Xi.

We see that through induction, our statement holds for all j. Note that this proof
requires that P (Xr = 1) ̸= 0, for there to be Chain Growth.

12.2.2 Proving Common Prefix and Chain Growth
First, let’s consider the relations between the expectations of X,Y, Z under the
honest majority assumption. It is clear that E[X(S)] > E[Y (S)], because an hon-
estly successful round is not necessarily a convergence opportunity. Moreover, we
expect that E[X(S)] > E[Z(S)] due to the honest majority assumption because
less computing power implies fewer expected successful queries (this will be for-
mally proven later). Therefore, under the honest majority assumption, we would
expect that E[Z(S)] < E[Y (S)] < E[X(S)]. At this point, it is not obvious that
E[Z(S)] < E[Y (S)] but we will prove this later in this lecture.
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Figure 12.1: Illustration of the probability density functions for X(S), Y (S), and
Z(S). Note that E[Z(S)] < E[Y (S)] < E[X(S)]

But if we want common prefix to hold except with negligible probability, it is not
sufficient that the expectations are in this order. It is not sufficient that on average
the adversary will have fewer successful queries than the honest parties will have
convergence opportunities. We want something stronger: except with negligible
probability, in all large enough intervals of consecutive slots S, the adversary will
have fewer successful queries than the honest parties will have convergence oppor-
tunities, i.e. Pr[∀S : Z(S) < Y (S)] ≥ 1− negl(κ). In other words, the expectations
of X(S), Y (S), and Z(S) must be sufficiently separated so that the probability of
Y (S) ≤ Z(S) is negligible.

In order to prove Pr[Y (S) < Z(S)] = negl(κ), we will use a probability tool
called the Chernoff Bound and introduce the concept of typicality.

Chernoff Bound

We will not prove this theorem here, but intuitively, the Chernoff Bound says this:
if we flip a fair coin n times, where heads = 1 and tails = 0, then the more tosses
we have, the less likely their sum is going to deviate from the expected value of
their sum, which is 0.5× n. As the number of trials increases, the probability that
the sum is off the expectation by a certain percentage of error approaches 0 (this
probability is represented by the shaded regions in Figure 12.2). More formally, the
Chernoff Bound states:

Theorem 14. Consider random variables Xi, i ∈ [n] s.t. Xi
i.i.d.∼ Bernoulli(p) and

X =
∑n

i=1 Xi. Let µ = E[X] = nE[Xi]. For any 0 < ϵ < 1,

Pr[X ≤ (1− ϵ)µ] ≤ e−Ω(nϵ2µ), (12.1)

Pr[X ≥ (1 + ϵ)µ] ≤ e−Ω(nϵ2µ). (12.2)
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For more details about the Chernoff bound and its proof, a good reference is [9].
(This µ is internal to the Chernoff bound and is not the chain quality parameter.)

Typicality

Ultimately, we want to prove that common prefix and chain growth are satisfied ex-
cept with negligible probability. In order to simplify our analysis of probabilities, we
introduce the concept of “typicality”. Typical executions will be defined such that
executions will be typical except with negligible probability. If we show that typical
executions uphold chain growth and common prefix, then we will have proven that
chain growth and common prefix hold except with negligible probability.

Definition 26 ((ϵ, λ)-Typical executions). An execution is typical if for all sets of
consecutive rounds S with |S| ≥ λ:

1. (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)]

2. (1− ϵ)E[Y (S)] < Y (S)

3. Z(S) < E[Z(S)] + ϵE[X(S)]

In addition, there are no collisions or predictions in the Random Oracle.

Theorem 15. (ϵ, λ)-Typical executions occur with probability at least 1− negl(λ).

Proof. We can show that each of the three properties hold with (1−negl(λ)) prob-
ability, where n = |S| ≥ λ.

1. Directly by Chernoff bound, this is true with probability ≥ 1− e−Ω(nϵ2).

2. By the left-sided Chernoff bound, we have that (1− ϵ)E[Y (S)] < Y (S) is true
with probability ≥ 1− e−Ω(nϵ2).

3. By the right-sided Chernoff bound, we have that Z(S) < (1 + ϵ)E[Z(S)] =

E[Z(S)] + ϵE[Z(S)] is true with probability ≥ 1 − e−Ω(nϵ2). By the honest
majority assumption, we expect E[Z(S)] < E[X(S)] because less computing
power implies fewer expected successful queries (this will be proven momen-
tarily). Since ϵ is positive, ϵE[Z(S)] < ϵE[X(S)]. All together we have
Z(S) < (1 + ϵ)E[Z(S)] = E[Z(S)] + ϵE[Z(S)] < E[Z(S)] + ϵE[X(S)].

4. Since the Random Oracle randomly samples each output from {0, 1}κ, the
probability that it samples the same output for two different inputs is negl(κ).
Similarly, the probability that the adversary can predict the output for an
input it has not queried before is negl(κ). The probability that a collision or
prediction occurs over a polynomial time execution is also negl(κ). (We will
choose κ = Ω(λ)).

Note that the reason we can use the Chernoff Bound is because we are using the
random oracle model, which gives us that each query to the random oracle being
successful is an independent Bernoulli random variable, hence the random sequences
X,Y , and Z are independent across time (Xr and Yr are not independent, but Xr

and Xr′ for r ̸= r′ are). This is stronger than just a collision-resistant hash function.
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Note that we need the set S to be of size at least λ to allow the variables to
be concentrated within a Chernoff error ϵ, because Chernoff bound requires a large
enough number of trials to be invoked.

For reasons that we will see soon, we will choose ϵ and f so that 3f + 3ϵ ≤ δ.
This is called the balancing equation. Here, δ is the honest advantage, i.e., t <
(1− δ)(n− t).

Now remember our goal is to prove that the expectations of X, Y , and Z must
be sufficiently separated so that Y (S) > Z(S) except with negligible probability,
i.e. we want to show that the lower bound of Y (S) is larger than the upper bound
of Z(S). Typicality gives us bounds on X(S), Y (S), Z(S) but they are with respect
to E[X(S)],E[Y (S)],E[Z(S)], so we need to find bounds for these expectations
respectively. Since the random variables Xr are independent and identically dis-
tributed for different r, E[X(S)] = |S|E[Xr]. Similarly, E[Y (S)] = |S|E[Yr] and
E[Z(S)] = |S|E[Zr]. So, we only need to compare E[Xr], E[Yr] and E[Zr].

What do we know about E[Xr]?

E[Xr] = f = Pr[at least one successful honest query in round r]

= 1− Pr[no honest query succeeds in round r]

= 1− (1− p)q(n−t)

< pq(n− t). (12.3)

The last step above comes from Bernoulli’s inequality, i.e, (1 + x)a > 1 +
ax, ∀x, a ∈ R, x > −1, x ̸= 0, a > 1. We can also show that

f

1− f
=

1− (1− p)q(n−t)

(1− p)q(n−t)
= (1− p)−q(n−t) − 1 > (1 + p)q(n−t) − 1 > pq(n− t).

(12.4)

Therefore, we can sandwich the value of E[Xr] by its lower and upper bounds.

(1− f)pq(n− t) < E[Xr] < pq(n− t). (12.5)

For E[Yr], we have

E[Yr] ≥ q(n− t)p(1− p)q(n−t)−1 > pq(n− t)[1− pq(n− t)] ≥ f(1− f). (12.6)

The first inequality is obtained by assuming that all honest parties make all q
queries even after a successful one and summing over all queries the probability
p(1 − p)q(n−t)−1 that it is the only successful one. The second inequality uses
(1 − p)q(n−t)−1 > (1 − p)q(n−t) and uses Bernoulli’s inequality again. The third
inequality holds because f(1− f) is an increasing function for f ∈ (0, 1

2 ).
Since the adversary is allowed at most qt queries in each round and each query

is successful with probability p, we also have

E[Zr] = pqt. (12.7)

Even though we want the expectations of X(S), Y (S), and Z(S) to be suffi-
ciently separated so that Y (S) > Z(S) except with negligible probability, we cannot
separate them arbitrarily far. This is because the distance between E[Z] and E[X]
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is determined by the advantage held by the majority in the honest majority as-
sumption, i.e., t ≤ (1− δ)(n− t) where 3f + 3ϵ ≤ δ. To see this,

E[Zr] = pqt =
t

n− t
· pq(n− t) <

t

n− t
· f

1− f
<

(
1 +

δ

2

)
· f · t

n− t
. (12.8)

Here, we have used the inequality f
1−f > pq(n − t) proved in (??), and another

inequality 1
1−f < 1 + δ

2 . To prove the second inequality, we know that f < δ
3

because 3f + 3ϵ ≤ δ and ϵ > 0. So, we need to show that 1
1−δ/3 < 1 + δ

2 which can
be verified as follows:

1 <

(
1− δ

3

)(
1 +

δ

2

)
⇐⇒ 1 < 1 +

δ

2
− δ

3
− δ2

6

⇐⇒ 0 <
δ

6
− δ2

6

⇐⇒ 0 <
δ

6
(1− δ)

which is true because 0 < δ < 1.
The honest advantage δ (which is the distance between |S|pqt and |S|pq(n− t),

scaled by |S|pq(n − t)) is composed of the distance between E[Z(S)] = |S|pqt and
E[Y (S)], distance between E[Y (S)] and E[X(S)], and distance between E[X(S)] and
|S|pq(n−t). We allocate this total possible distance by following balancing equation:
3ϵ+ 3f ≤ δ. Let’s break this inequality down for an intuitive understanding along
with Figure 12.2.

• 3ϵ is the relative distance we allocate between E[Z(S)] and E[Y (S)], where
ϵ is the Chernoff error. By Chernoff, we have that Z(S) should not exceed
(1+ϵ)E[Z(S)] with more than negligible probability, and likewise Y (S) should
not go below (1 − ϵ)E[Y (S)]. Therefore, if we leave some buffer distance
between (1+ ϵ)E[Z(S)] and (1− ϵ)E[Y (S)] we should have that Y (S) > Z(S)
except with negligible probability. So we secure ϵ to the right of E[Z(S)], ϵ to
the left of E[Y (S)], and another ϵ in between as a buffer, which gives us 3ϵ.

• The probability of an honestly successful round is f = E[Xr]. Recall that we
have calculated that E[Yr] ≥ f(1−f) in (??), so E[Y (S)] is at most f relative
distance away from E[X(S)]. Following similar logic as above, we secure f to
the right of E[Y (S)] and f to the left of E[X(S)].

• Finally, E[X(S)] is at most f relative distance away from |S|pq(n − t). We
get this from (??).

Note the relationship between λ and ϵ. The smaller we require our Chernoff
error ϵ to be, the longer time λ we need to wait for this concentration to occur. If
we look at the Chernoff bound equations, the probability that our variables fail to
be nicely concentrated is approximately e−Ω(ϵ2λf) (since the expectations of X(S),
Y (S), Z(S) are proportional to λf). Recall from the previous lectures that we
denoted by κ our security parameter, and this indicated the bits in our accepted
probability of failure. Our accepted probability of failure was then at most in the
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order of 2−κ. We want to achieve the same thing with our choice of ϵ and λ.
Therefore, given a particular κ (for example κ = 256) and particular values for ϵ
and f , we need to set λ such that κ ≈ ϵ2λf . In a nutshell, the larger we make ϵ,
the less time λ we will need to wait for confirmation.

So, we want both ϵ to be large (to achieve fast confirmation and a small λ),
but also f to be large (to achieve good chain growth with a fast block production
rate). However, we cannot make both of them arbitrarily large, as they have to
satisfy the balancing equation: 3f +3ϵ ≤ δ. The value δ is not a parameter we can
change, but is given to us from the threat model and adversarial assumptions: It is
telling us what sort of adversary we are able to withstand. In the end, for a given
δ, we want to have the fastest possible blockchain, yet maintain security. Splitting
equally between ϵ and f , we can choose ϵ = f = δ/6. The takehome lesson is that,
to withstand a powerful adversary (small δ), we need to wait a sufficient amount
of time for transactions to be confirmed. You cannot have both quick confirmation
and good security!

In the next chapter, we will use the tools developed today to show that in typical
executions, Y (S) > Z(S) for all intervals of slots S with |S| ≥ λ. This will help us
to prove that Common Prefix and Chain Growth hold in typical executions.
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Figure 12.2: The distribution of the random variables X, Y , and Z in the proof-of-work longest chain protocol.
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Chapter 13

Security in Earnest III DRAFT

13.1 Recap of last lecture: Security in Earnest (II)
We proved several bounds in the previous lecture:

(1− f)pq(n− t) < f = E[Xr] = 1− (1− p)q(n−t) < pq(n− t) (13.1)

E[Yr] ≥ q(n− t)p(1− p)q(n−t−1) > pq(n− t)(1− pq(n− t)) ≥ f(1− f) >

(
1− δ

3

)
f

(13.2)
(1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] (13.3)
(1− ϵ)E[Y (S)] < Y (S) (13.4)

Z(S) < (1 + ϵ)E[Z(S)] (13.5)

First, Xr indicates whether or not round r was successful, i.e. had at least
one successful honest query. Bound 13.1 shows a lower and upper bound for
E[Xr]. Second, Yr indicates whether or not round r was a convergence oppor-
tunity. Bound 13.2 gives us a lower bound on E[Yr]. Bounds 13.3, 13.4, and 13.5
are Chernoff bounds on X(S), Y (S), and Z(S), respectively where S is a set of
consecutive rounds.

Today, we will be covering Security in Earnest (III). It is highly recommended
to read the Bitcoin Backbone paper.

13.2 Typicality implies Z(S) < Y (S)

We want to prove that in a typical execution, we have the property that Z(S) <
Y (S). This will help us prove that the Common Prefix property holds.

13.2.1 Derivation of Upper Bound of E[Z(S)]
First, we want to derive an upper bound of E[Z(S)], which will help us achieve
our result. Zr counts the number of successful queries for the adversary in round
r. It is a sum of qt repeated independent Bernoulli trials, each with a p chance of
succeeding, so E[Zr] = pqt. We can rewrite pqt as t

n−tpq(n− t). Now, if we apply
bound 13.1 we derived from last class and the fact that 1

1−f < 1+δ/2 with f = δ/6
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we have that

E[Zr] =
t

n− t
pq(n− t) (13.6)

<
t

n− t
· f

1− f
(13.7)

<

(
1 +

δ

2

)
f

t

n− t
. (13.8)

13.2.2 Combining it to get Z(S) < Y (S)

We can use bound 13.2, which gives a lower bound on E[Yr]. We have that:

Y (S) ≥ (1− ϵ)E[Y (S)] (13.9)
= (1− ϵ)E[Yr]|S| (13.10)
> (1− ϵ)f(1− f)|S| (13.11)

>

(
1− δ

3

)
f |S| (13.12)

The last inequality is derived as follows by setting f = ϵ = δ
6 :

(1− ϵ)(1− f) > 1− δ

3
(13.13)

⇐
(
1− δ

6

)(
1− δ

6

)
> 1− δ

3
(13.14)

⇐ −2δ

6
+

δ2

36
> −δ

3
(13.15)

⇐ δ2

36
> 0 (13.16)

⇐ δ > 0. (13.17)

From the Chernoff bound 13.5 and upper bound 13.8, we also have that:

Z(S) < (1 + ϵ)E[Z(S)] (13.18)
= (1 + ϵ)E[Zr]|S| (13.19)

< (1 + ϵ)
t

n− t
· f

1− f
|S| (13.20)

<
t

n− t
· f

1− f
|S|+ ϵ

t

n− t
· 1

1− f
f |S| (13.21)

<
t

n− t
· f

1− f
|S|+ ϵf |S| (13.22)

≤
(
1− 2δ

3

)
f |S|. (13.23)

To prove inequality 13.22, note that from the balancing equation we have f ≤ δ
3 .

149



It suffices to show that t
n−t ·

1
1−f < 1:

t

n− t
· 1

1− f
< 1 (13.24)

⇐ 1− δ

1− f
< 1 (13.25)

⇐ 1− δ < 1− δ

3
. (13.26)

To prove inequality 13.23, we again use our choice of values f = ϵ = δ
6 . Then,

t

n− t
· 1

1− f
+ ϵ < 1− 2δ

3
(13.27)

⇐ 1− δ

1− f
+ ϵ < 1− 2δ

3
(13.28)

⇐ 1− δ

1− δ/6
+

δ

6
< 1− 2δ

3
(13.29)

⇐ 1− δ +
δ

6
− δ2

36
< 1− δ

6
− 2δ

3
+

2δ2

18
(13.30)

⇐ −5δ

6
− δ2

36
< −5δ

6
+

δ2

9
(13.31)

⇐ − δ2

36
<

δ2

9
(13.32)

Combining results 13.23 and 13.12 together gives us:

Z(S) <

(
1− 2δ

3

)
f |S| <

(
1− δ

3

)
f |S| < Y (S). (13.33)

13.3 Proof of Chain Growth
Recall chain growth lemma from the previous lecture.

Lemma 16 (Chain Growth Lemma). Suppose that at round r, an honest party P
has a chain of length l. Then by round r′ ≥ r, every honest party has adopted a
chain of length at least l +

∑r′−1
i=r Xi.

Now we are equipped with all the necessary tools to prove our first chain virtue.

Theorem 17 (Chain Growth). In a typical execution, Chain Growth is attained
with τ = (1− ϵ)f, s ≥ λ.

Proof. For rounds S, such that |S| ≥ λ,X(S) > (1 − ϵ)f |S| with overwhelming
probability. Invoking the growth chain lemma, it is deduced that the chain grows
by at least (1− ϵ)fλ. Therefore, the chain velocity is τ = (1− ϵ)f .

13.4 Proof of Common Prefix
In order for the common prefix property to be violated, the adversary must have
had a separate successful query for every convergence opportunity (although, not
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necessarily during the same round). Any convergence opportunity without a match-
ing adversarial success would lead to convergence among the honest parties. In a
nutshell, it must hold that Z(S) > Y (S) over S where |S| > λ, in order for no
convergence to happen. Our plan for this proof is as follows. We will show this by
contradiction. Suppose that CP(k) is violated. Then,

1. We show that it takes a long time to produce these k blocks, so |S| ≥ λ.

2. We use the pairing lemma: every convergence opportunity is paired to an
adverserially successful query, so Y (S) ≤ Z(S).

3. Lastly, we use our result for typical executions that we can apply as S is large:
Z(S) < Y (S), which contradicts the previous point.

The last two points are already proven, so we are only missing the first point to
prove Common Prefix. To do so, we prove the following lemma. We will choose λ
to be at least 2f .

Lemma 18 (Patience Lemma). In typical executions, any k ≥ 2λf blocks have
been computed in at least k

2f rounds.

Proof. Let S′ be the set of consecutive rounds during which these k blocks were
computed. Towards a contradiction, assume that |S′| < k

2f . The idea is to apply
typicality to the set of rounds S′ and to show that, within that small set of rounds,
all these k blocks could not possibly have been computed. However, we cannot
directly use the set of rounds S′, as it is not long enough to apply typicality. We will
expand S′ to a larger set of rounds S where typicality is applicable, so we need to set
|S| ≥ λ. We will do this by including more rounds from the future into S. We will
then show that, even in this larger S, it is impossible that k blocks were computed.
So let S be the set of rounds extending S′ such that |S| = ⌈ k

2f ⌉+ 1 ≤ k
2f + 2. We

can now apply typicality to S.
The number of blocks that were computed during S is at most X(S) + Z(S)

(i.e., they were computed by either the honest parties or the adversary).
We have that

X(S) + Z(S) < (1 + ϵ)E[X(S)] +

(
1− 2δ

3

)
f |S| (13.34)

= (1 + ϵ)f |S|+
(
1− 2δ

3

)
f |S| (13.35)

=

(
2 + ϵ− 2δ

3

)
f |S| (13.36)

≤ (2− 2f)f |S| (13.37)

≤ (2− 2f)f ·
(

k

2f
+ 2

)
(13.38)

= (1− f)(k + 4f) (13.39)
< k (13.40)

The last inequality holds for k ≥ 4 (this follows from λ ≥ 2/f). To prove inequal-
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Figure 13.1: A common prefix violation. Honestly computed blocks are shown in
gray, while adversarially computed blocks are shown in red. At the end of round
r, party P has adopted chain C and party P ′ has adopted chain C ′. B⋆ is the
most recent honestly produced block in the common prefix of C,C ′. This is genesis
if all other blocks in the common prefix are adversarial. r′ is the round with the
last convergence opportunity. By the Pairing Lemma, convergence opportunities
in rounds after the fork must be matched with a successful adversarial query. For
example, C[i′ − 3] is an adversarially produced block is matched with C ′[i′ − 3],
and similarly for C ′[i′ − 2], C[i′ − 2]. It is also possible to have multiple honestly
produced blocks in a round after the fork without any convergence opportunities,
as C[i′ − 1], C ′[i′ − 1] show.

ity 13.37, we use the balancing equation 3f + 3ϵ < δ as follows:

2 + ϵ− 2δ

3
≤ 2− 2f (13.41)

⇐ 3ϵ− 2δ ≤ −6f (13.42)

⇐ 3f +
3

2
ϵ ≤ δ (13.43)

⇐ 3f +
3

2
ϵ ≤ 3f + 3ϵ (13.44)

Since we wanted at least k blocks, inequality 13.40 is a contradiction.

Recall also the Pairing Lemma from the last lecture.

Lemma 19 (Pairing Lemma). Consider a block C[i] produced during a convergence
opportunity. If C ′[i] ̸= C[i], then C ′[i] was adversarially computed.

We are now ready to prove our second chain virtue.

Theorem 20 (Common Prefix). A typical execution satisfies Common Prefix with
k = 2λf .

Proof. Assume towards contradiction that there is a CP(k) violation, illustrated in
Figure 13.1. We have two forks C,C ′ where if we remove the last k blocks from
each of them, they are not the same chain. Let S = {r∗, ..., r}, where r∗ is the
round in which the most recent honestly mined block C[i∗] = B∗ in the common
prefix of C,C ′ was produced. After r∗, all honest parties will be mining on chains
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at least i∗ long.

We claim that Z(S) ≥ Y (S). Let J be set of the heights of blocks B, where B
was produced during a convergence opportunity in S. Let r′ be the last convergence
opportunity in S, in which block B′ was computed at height i′.

We distinguish three cases for the heights of the convergence opportunities
within S.

Case 1: The blocks between B∗ and the fork point are adversarial (by the
definition of r∗).

Case 2: Any blocks of height larger than i′ must be adversarial. To see this,
observe that, if there was an honestly produced block with height more than i′,
then, during round r′, the honest party would not have mined at height i′ − 1. So,
all the blocks that exist at height larger than the shorter chain between C and C ′

must also be adversarial.
Case 3: For the blocks that were produced in the same heights in these two

forks, we can apply the Pairing Lemma. We conclude that, since there are two
different chains with blocks at this height, one of them must be adversarial.

Thus, overall, we have matched every convergence opportunity with an adver-
sarially successful query. We conclude that Z(S) ≥ Y (S).

We have k blocks that were produced in S, so by the Patience Lemma, we have
|S| ≥ λ, which gives us typicality. However, typicality states that Z(S) < Y (S), a
direct contradiction.

13.5 Note about Tradeoffs with ϵ and f

Let us discuss the relationship between a concrete ϵ and λ obtained by the Chernoff
bound. Larger ϵ allows for smaller λ. Let us explore why. The bound on the
probability of failure given to us by the Chernoff bound is in the order of e−ϵ2λf .
Our acceptable probability of failure must be very small and is determined by the
security parameter κ (recall that typically κ = 256 and our acceptable probability
of failure is 2−κ). Therefore, solving κ = −ϵ2λf , then we must set λ to be large
enough to account for the small ϵ2.

One of the bounds we enforce is:

3ϵ+ 3f < δ

Larger f gives larger chain growth since it is easier to produce successful queries.
Overall, we want to make both ϵ and f large, because we like to have quick confir-
mation (small λ) and fast chain growth (large f). However, we cannot make both
of them large, as we are bounded by our honest advantage δ.

The verdict is that, in a setting with a powerful adversary (small δ), we must
have a slow chain, either producing blocks slowly, or with the requirement to wait
many blocks for confirmation, in order to ensure security. A fast chain with fast
confirmation won’t cut it.
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